1 /* Copyright 2002-2018 CS Systèmes d'Information 2 * Licensed to CS Systèmes d'Information (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.utils; 18 19 import java.util.Collection; 20 21 import org.hipparchus.analysis.differentiation.DerivativeStructure; 22 import org.hipparchus.analysis.interpolation.HermiteInterpolator; 23 import org.hipparchus.geometry.euclidean.threed.FieldRotation; 24 import org.hipparchus.geometry.euclidean.threed.Rotation; 25 import org.hipparchus.geometry.euclidean.threed.RotationConvention; 26 import org.hipparchus.geometry.euclidean.threed.Vector3D; 27 import org.hipparchus.util.FastMath; 28 import org.hipparchus.util.MathArrays; 29 import org.orekit.errors.OrekitException; 30 import org.orekit.errors.OrekitInternalError; 31 import org.orekit.errors.OrekitMessages; 32 import org.orekit.time.AbsoluteDate; 33 import org.orekit.time.TimeStamped; 34 35 /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}. 36 * <p>Instances of this class are guaranteed to be immutable.</p> 37 * @author Luc Maisonobe 38 * @since 7.0 39 */ 40 public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped { 41 42 /** Serializable UID. */ 43 private static final long serialVersionUID = 20140723L; 44 45 /** The date. */ 46 private final AbsoluteDate date; 47 48 /** Builds a rotation/rotation rate pair. 49 * @param date coordinates date 50 * @param rotation rotation 51 * @param rotationRate rotation rate Ω (rad/s) 52 * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) 53 */ 54 public TimeStampedAngularCoordinates(final AbsoluteDate date, 55 final Rotation rotation, 56 final Vector3D rotationRate, 57 final Vector3D rotationAcceleration) { 58 super(rotation, rotationRate, rotationAcceleration); 59 this.date = date; 60 } 61 62 /** Build the rotation that transforms a pair of pv coordinates into another pair. 63 64 * <p><em>WARNING</em>! This method requires much more stringent assumptions on 65 * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D, 66 * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class. 67 * As far as the Rotation constructor is concerned, the {@code v₂} vector from 68 * the second pair can be slightly misaligned. The Rotation constructor will 69 * compensate for this misalignment and create a rotation that ensure {@code 70 * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT 71 * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be 72 * preserved, this constructor works <em>only</em> if the two pairs are fully 73 * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code 74 * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt 75 * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> 76 77 * @param date coordinates date 78 * @param u1 first vector of the origin pair 79 * @param u2 second vector of the origin pair 80 * @param v1 desired image of u1 by the rotation 81 * @param v2 desired image of u2 by the rotation 82 * @param tolerance relative tolerance factor used to check singularities 83 * @exception OrekitException if the vectors components cannot be converted to 84 * {@link DerivativeStructure} with proper order 85 */ 86 public TimeStampedAngularCoordinates(final AbsoluteDate date, 87 final PVCoordinates u1, final PVCoordinates u2, 88 final PVCoordinates v1, final PVCoordinates v2, 89 final double tolerance) 90 throws OrekitException { 91 super(u1, u2, v1, v2, tolerance); 92 this.date = date; 93 } 94 95 /** Build one of the rotations that transform one pv coordinates into another one. 96 97 * <p>Except for a possible scale factor, if the instance were 98 * applied to the vector u it will produce the vector v. There is an 99 * infinite number of such rotations, this constructor choose the 100 * one with the smallest associated angle (i.e. the one whose axis 101 * is orthogonal to the (u, v) plane). If u and v are collinear, an 102 * arbitrary rotation axis is chosen.</p> 103 104 * @param date coordinates date 105 * @param u origin vector 106 * @param v desired image of u by the rotation 107 * @exception OrekitException if the vectors components cannot be converted to 108 * {@link DerivativeStructure} with proper order 109 */ 110 public TimeStampedAngularCoordinates(final AbsoluteDate date, 111 final PVCoordinates u, final PVCoordinates v) 112 throws OrekitException { 113 super(u, v); 114 this.date = date; 115 } 116 117 /** Builds a TimeStampedAngularCoordinates from a {@link FieldRotation}<{@link DerivativeStructure}>. 118 * <p> 119 * The rotation components must have time as their only derivation parameter and 120 * have consistent derivation orders. 121 * </p> 122 * @param date coordinates date 123 * @param r rotation with time-derivatives embedded within the coordinates 124 */ 125 public TimeStampedAngularCoordinates(final AbsoluteDate date, 126 final FieldRotation<DerivativeStructure> r) { 127 super(r); 128 this.date = date; 129 } 130 131 /** {@inheritDoc} */ 132 public AbsoluteDate getDate() { 133 return date; 134 } 135 136 /** Revert a rotation/rotation rate pair. 137 * Build a pair which reverse the effect of another pair. 138 * @return a new pair whose effect is the reverse of the effect 139 * of the instance 140 */ 141 public TimeStampedAngularCoordinates revert() { 142 return new TimeStampedAngularCoordinates(date, 143 getRotation().revert(), 144 getRotation().applyInverseTo(getRotationRate().negate()), 145 getRotation().applyInverseTo(getRotationAcceleration().negate())); 146 } 147 148 /** Get a time-shifted state. 149 * <p> 150 * The state can be slightly shifted to close dates. This shift is based on 151 * a simple linear model. It is <em>not</em> intended as a replacement for 152 * proper attitude propagation but should be sufficient for either small 153 * time shifts or coarse accuracy. 154 * </p> 155 * @param dt time shift in seconds 156 * @return a new state, shifted with respect to the instance (which is immutable) 157 */ 158 public TimeStampedAngularCoordinates shiftedBy(final double dt) { 159 final AngularCoordinates sac = super.shiftedBy(dt); 160 return new TimeStampedAngularCoordinates(date.shiftedBy(dt), 161 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); 162 163 } 164 165 /** Add an offset from the instance. 166 * <p> 167 * We consider here that the offset rotation is applied first and the 168 * instance is applied afterward. Note that angular coordinates do <em>not</em> 169 * commute under this operation, i.e. {@code a.addOffset(b)} and {@code 170 * b.addOffset(a)} lead to <em>different</em> results in most cases. 171 * </p> 172 * <p> 173 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 174 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 175 * so that round trip applications are possible. This means that both {@code 176 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 177 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 178 * </p> 179 * @param offset offset to subtract 180 * @return new instance, with offset subtracted 181 * @see #subtractOffset(AngularCoordinates) 182 */ 183 @Override 184 public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) { 185 final Vector3D rOmega = getRotation().applyTo(offset.getRotationRate()); 186 final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration()); 187 return new TimeStampedAngularCoordinates(date, 188 getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR), 189 getRotationRate().add(rOmega), 190 new Vector3D( 1.0, getRotationAcceleration(), 191 1.0, rOmegaDot, 192 -1.0, Vector3D.crossProduct(getRotationRate(), rOmega))); 193 } 194 195 /** Subtract an offset from the instance. 196 * <p> 197 * We consider here that the offset rotation is applied first and the 198 * instance is applied afterward. Note that angular coordinates do <em>not</em> 199 * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code 200 * b.subtractOffset(a)} lead to <em>different</em> results in most cases. 201 * </p> 202 * <p> 203 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 204 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 205 * so that round trip applications are possible. This means that both {@code 206 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 207 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 208 * </p> 209 * @param offset offset to subtract 210 * @return new instance, with offset subtracted 211 * @see #addOffset(AngularCoordinates) 212 */ 213 @Override 214 public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) { 215 return addOffset(offset.revert()); 216 } 217 218 /** Interpolate angular coordinates. 219 * <p> 220 * The interpolated instance is created by polynomial Hermite interpolation 221 * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation. 222 * </p> 223 * <p> 224 * This method is based on Sergei Tanygin's paper <a 225 * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude 226 * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues 227 * vector as described in Malcolm D. Shuster's paper <a 228 * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A 229 * Survey of Attitude Representations</a>. This change avoids the singularity at π. 230 * There is still a singularity at 2π, which is handled by slightly offsetting all rotations 231 * when this singularity is detected. Another change is that the mean linear motion 232 * is first removed before interpolation and added back after interpolation. This allows 233 * to use interpolation even when the sample covers much more than one turn and even 234 * when sample points are separated by more than one turn. 235 * </p> 236 * <p> 237 * Note that even if first and second time derivatives (rotation rates and acceleration) 238 * from sample can be ignored, the interpolated instance always includes 239 * interpolated derivatives. This feature can be used explicitly to 240 * compute these derivatives when it would be too complex to compute them 241 * from an analytical formula: just compute a few sample points from the 242 * explicit formula and set the derivatives to zero in these sample points, 243 * then use interpolation to add derivatives consistent with the rotations. 244 * </p> 245 * @param date interpolation date 246 * @param filter filter for derivatives from the sample to use in interpolation 247 * @param sample sample points on which interpolation should be done 248 * @return a new position-velocity, interpolated at specified date 249 * @exception OrekitException if the number of point is too small for interpolating 250 */ 251 public static TimeStampedAngularCoordinates interpolate(final AbsoluteDate date, 252 final AngularDerivativesFilter filter, 253 final Collection<TimeStampedAngularCoordinates> sample) 254 throws OrekitException { 255 256 // set up safety elements for 2π singularity avoidance 257 final double epsilon = 2 * FastMath.PI / sample.size(); 258 final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4)); 259 260 // set up a linear model canceling mean rotation rate 261 final Vector3D meanRate; 262 if (filter != AngularDerivativesFilter.USE_R) { 263 Vector3D sum = Vector3D.ZERO; 264 for (final TimeStampedAngularCoordinates datedAC : sample) { 265 sum = sum.add(datedAC.getRotationRate()); 266 } 267 meanRate = new Vector3D(1.0 / sample.size(), sum); 268 } else { 269 if (sample.size() < 2) { 270 throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION, 271 sample.size()); 272 } 273 Vector3D sum = Vector3D.ZERO; 274 TimeStampedAngularCoordinates previous = null; 275 for (final TimeStampedAngularCoordinates datedAC : sample) { 276 if (previous != null) { 277 sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(), 278 datedAC.date.durationFrom(previous.date))); 279 } 280 previous = datedAC; 281 } 282 meanRate = new Vector3D(1.0 / (sample.size() - 1), sum); 283 } 284 TimeStampedAngularCoordinates offset = 285 new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO); 286 287 boolean restart = true; 288 for (int i = 0; restart && i < sample.size() + 2; ++i) { 289 290 // offset adaptation parameters 291 restart = false; 292 293 // set up an interpolator taking derivatives into account 294 final HermiteInterpolator interpolator = new HermiteInterpolator(); 295 296 // add sample points 297 double sign = +1.0; 298 Rotation previous = Rotation.IDENTITY; 299 300 for (final TimeStampedAngularCoordinates ac : sample) { 301 302 // remove linear offset from the current coordinates 303 final double dt = ac.date.durationFrom(date); 304 final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt)); 305 306 // make sure all interpolated points will be on the same branch 307 final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(), 308 fixed.getRotation().getQ1(), previous.getQ1(), 309 fixed.getRotation().getQ2(), previous.getQ2(), 310 fixed.getRotation().getQ3(), previous.getQ3()); 311 sign = FastMath.copySign(1.0, dot * sign); 312 previous = fixed.getRotation(); 313 314 // check modified Rodrigues vector singularity 315 if (fixed.getRotation().getQ0() * sign < threshold) { 316 // the sample point is close to a modified Rodrigues vector singularity 317 // we need to change the linear offset model to avoid this 318 restart = true; 319 break; 320 } 321 322 final double[][] rodrigues = fixed.getModifiedRodrigues(sign); 323 switch (filter) { 324 case USE_RRA: 325 // populate sample with rotation, rotation rate and acceleration data 326 interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]); 327 break; 328 case USE_RR: 329 // populate sample with rotation and rotation rate data 330 interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]); 331 break; 332 case USE_R: 333 // populate sample with rotation data only 334 interpolator.addSamplePoint(dt, rodrigues[0]); 335 break; 336 default : 337 // this should never happen 338 throw new OrekitInternalError(null); 339 } 340 } 341 342 if (restart) { 343 // interpolation failed, some intermediate rotation was too close to 2π 344 // we need to offset all rotations to avoid the singularity 345 offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I, 346 epsilon, 347 RotationConvention.VECTOR_OPERATOR), 348 Vector3D.ZERO, Vector3D.ZERO)); 349 } else { 350 // interpolation succeeded with the current offset 351 final double[][] p = interpolator.derivatives(0.0, 2); 352 final AngularCoordinates ac = createFromModifiedRodrigues(p); 353 return new TimeStampedAngularCoordinates(offset.getDate(), 354 ac.getRotation(), 355 ac.getRotationRate(), 356 ac.getRotationAcceleration()).addOffset(offset); 357 } 358 359 } 360 361 // this should never happen 362 throw new OrekitInternalError(null); 363 364 } 365 366 }