1   /* Copyright 2002-2018 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import java.io.Serializable;
20  
21  import org.hipparchus.analysis.differentiation.DSFactory;
22  import org.hipparchus.analysis.differentiation.DerivativeStructure;
23  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24  import org.hipparchus.geometry.euclidean.threed.Vector3D;
25  import org.hipparchus.util.FastMath;
26  import org.orekit.errors.OrekitException;
27  import org.orekit.errors.OrekitMessages;
28  import org.orekit.time.TimeShiftable;
29  
30  /** Simple container for Position/Velocity/Acceleration triplets.
31   * <p>
32   * The state can be slightly shifted to close dates. This shift is based on
33   * a simple quadratic model. It is <em>not</em> intended as a replacement for
34   * proper orbit propagation (it is not even Keplerian!) but should be sufficient
35   * for either small time shifts or coarse accuracy.
36   * </p>
37   * <p>
38   * This class is the angular counterpart to {@link AngularCoordinates}.
39   * </p>
40   * <p>Instances of this class are guaranteed to be immutable.</p>
41   * @author Fabien Maussion
42   * @author Luc Maisonobe
43   */
44  public class PVCoordinates implements TimeShiftable<PVCoordinates>, Serializable {
45  
46      /** Fixed position/velocity at origin (both p, v and a are zero vectors). */
47      public static final PVCoordinates ZERO = new PVCoordinates(Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO);
48  
49      /** Serializable UID. */
50      private static final long serialVersionUID = 20140407L;
51  
52      /** The position. */
53      private final Vector3D position;
54  
55      /** The velocity. */
56      private final Vector3D velocity;
57  
58      /** The acceleration. */
59      private final Vector3D acceleration;
60  
61      /** Simple constructor.
62       * <p> Set the Coordinates to default : (0 0 0), (0 0 0), (0 0 0).</p>
63       */
64      public PVCoordinates() {
65          position     = Vector3D.ZERO;
66          velocity     = Vector3D.ZERO;
67          acceleration = Vector3D.ZERO;
68      }
69  
70      /** Builds a PVCoordinates triplet with zero acceleration.
71       * <p>Acceleration is set to zero</p>
72       * @param position the position vector (m)
73       * @param velocity the velocity vector (m/s)
74       */
75      public PVCoordinates(final Vector3D position, final Vector3D velocity) {
76          this.position     = position;
77          this.velocity     = velocity;
78          this.acceleration = Vector3D.ZERO;
79      }
80  
81      /** Builds a PVCoordinates triplet.
82       * @param position the position vector (m)
83       * @param velocity the velocity vector (m/s)
84       * @param acceleration the acceleration vector (m/s²)
85       */
86      public PVCoordinates(final Vector3D position, final Vector3D velocity, final Vector3D acceleration) {
87          this.position     = position;
88          this.velocity     = velocity;
89          this.acceleration = acceleration;
90      }
91  
92      /** Multiplicative constructor.
93       * <p>Build a PVCoordinates from another one and a scale factor.</p>
94       * <p>The PVCoordinates built will be a * pv</p>
95       * @param a scale factor
96       * @param pv base (unscaled) PVCoordinates
97       */
98      public PVCoordinates(final double a, final PVCoordinates pv) {
99          position     = new Vector3D(a, pv.position);
100         velocity     = new Vector3D(a, pv.velocity);
101         acceleration = new Vector3D(a, pv.acceleration);
102     }
103 
104     /** Subtractive constructor.
105      * <p>Build a relative PVCoordinates from a start and an end position.</p>
106      * <p>The PVCoordinates built will be end - start.</p>
107      * @param start Starting PVCoordinates
108      * @param end ending PVCoordinates
109      */
110     public PVCoordinates(final PVCoordinates start, final PVCoordinates end) {
111         this.position     = end.position.subtract(start.position);
112         this.velocity     = end.velocity.subtract(start.velocity);
113         this.acceleration = end.acceleration.subtract(start.acceleration);
114     }
115 
116     /** Linear constructor.
117      * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
118      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
119      * @param a1 first scale factor
120      * @param pv1 first base (unscaled) PVCoordinates
121      * @param a2 second scale factor
122      * @param pv2 second base (unscaled) PVCoordinates
123      */
124     public PVCoordinates(final double a1, final PVCoordinates pv1,
125                          final double a2, final PVCoordinates pv2) {
126         position     = new Vector3D(a1, pv1.position,     a2, pv2.position);
127         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity);
128         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration);
129     }
130 
131     /** Linear constructor.
132      * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
133      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
134      * @param a1 first scale factor
135      * @param pv1 first base (unscaled) PVCoordinates
136      * @param a2 second scale factor
137      * @param pv2 second base (unscaled) PVCoordinates
138      * @param a3 third scale factor
139      * @param pv3 third base (unscaled) PVCoordinates
140      */
141     public PVCoordinates(final double a1, final PVCoordinates pv1,
142                          final double a2, final PVCoordinates pv2,
143                          final double a3, final PVCoordinates pv3) {
144         position     = new Vector3D(a1, pv1.position,     a2, pv2.position,     a3, pv3.position);
145         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity);
146         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
147     }
148 
149     /** Linear constructor.
150      * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
151      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
152      * @param a1 first scale factor
153      * @param pv1 first base (unscaled) PVCoordinates
154      * @param a2 second scale factor
155      * @param pv2 second base (unscaled) PVCoordinates
156      * @param a3 third scale factor
157      * @param pv3 third base (unscaled) PVCoordinates
158      * @param a4 fourth scale factor
159      * @param pv4 fourth base (unscaled) PVCoordinates
160      */
161     public PVCoordinates(final double a1, final PVCoordinates pv1,
162                          final double a2, final PVCoordinates pv2,
163                          final double a3, final PVCoordinates pv3,
164                          final double a4, final PVCoordinates pv4) {
165         position     = new Vector3D(a1, pv1.position,     a2, pv2.position,
166                                     a3, pv3.position,     a4, pv4.position);
167         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity,
168                                     a3, pv3.velocity,     a4, pv4.velocity);
169         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration,
170                                     a3, pv3.acceleration, a4, pv4.acceleration);
171     }
172 
173     /** Builds a PVCoordinates triplet from  a {@link FieldVector3D}&lt;{@link DerivativeStructure}&gt;.
174      * <p>
175      * The vector components must have time as their only derivation parameter and
176      * have consistent derivation orders.
177      * </p>
178      * @param p vector with time-derivatives embedded within the coordinates
179      */
180     public PVCoordinates(final FieldVector3D<DerivativeStructure> p) {
181         position = new Vector3D(p.getX().getReal(), p.getY().getReal(), p.getZ().getReal());
182         if (p.getX().getOrder() >= 1) {
183             velocity = new Vector3D(p.getX().getPartialDerivative(1),
184                                     p.getY().getPartialDerivative(1),
185                                     p.getZ().getPartialDerivative(1));
186             if (p.getX().getOrder() >= 2) {
187                 acceleration = new Vector3D(p.getX().getPartialDerivative(2),
188                                             p.getY().getPartialDerivative(2),
189                                             p.getZ().getPartialDerivative(2));
190             } else {
191                 acceleration = Vector3D.ZERO;
192             }
193         } else {
194             velocity     = Vector3D.ZERO;
195             acceleration = Vector3D.ZERO;
196         }
197     }
198 
199     /** Transform the instance to a {@link FieldVector3D}&lt;{@link DerivativeStructure}&gt;.
200      * <p>
201      * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
202      * to the user-specified order.
203      * </p>
204      * @param order derivation order for the vector components (must be either 0, 1 or 2)
205      * @return vector with time-derivatives embedded within the coordinates
206      * @exception OrekitException if the user specified order is too large
207      */
208     public FieldVector3D<DerivativeStructure> toDerivativeStructureVector(final int order)
209         throws OrekitException {
210 
211         final DSFactory factory;
212         final DerivativeStructure x;
213         final DerivativeStructure y;
214         final DerivativeStructure z;
215         switch(order) {
216             case 0 :
217                 factory = new DSFactory(1, order);
218                 x = factory.build(position.getX());
219                 y = factory.build(position.getY());
220                 z = factory.build(position.getZ());
221                 break;
222             case 1 :
223                 factory = new DSFactory(1, order);
224                 x = factory.build(position.getX(), velocity.getX());
225                 y = factory.build(position.getY(), velocity.getY());
226                 z = factory.build(position.getZ(), velocity.getZ());
227                 break;
228             case 2 :
229                 factory = new DSFactory(1, order);
230                 x = factory.build(position.getX(), velocity.getX(), acceleration.getX());
231                 y = factory.build(position.getY(), velocity.getY(), acceleration.getY());
232                 z = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
233                 break;
234             default :
235                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
236         }
237 
238         return new FieldVector3D<>(x, y, z);
239 
240     }
241 
242     /** Transform the instance to a {@link FieldPVCoordinates}&lt;{@link DerivativeStructure}&gt;.
243      * <p>
244      * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
245      * to the user-specified order. As both the instance components {@link #getPosition() position},
246      * {@link #getVelocity() velocity} and {@link #getAcceleration() acceleration} and the
247      * {@link DerivativeStructure#getPartialDerivative(int...) derivatives} of the components
248      * holds time-derivatives, there are several ways to retrieve these derivatives. If for example
249      * the {@code order} is set to 2, then both {@code pv.getPosition().getX().getPartialDerivative(2)},
250      * {@code pv.getVelocity().getX().getPartialDerivative(1)} and
251      * {@code pv.getAcceleration().getX().getValue()} return the exact same value.
252      * </p>
253      * <p>
254      * If derivation order is 1, the first derivative of acceleration will be computed as a
255      * Keplerian-only jerk. If derivation order is 2, the second derivative of velocity (which
256      * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
257      * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
258      * </p>
259      * @param order derivation order for the vector components (must be either 0, 1 or 2)
260      * @return pv coordinates with time-derivatives embedded within the coordinates
261      * @exception OrekitException if the user specified order is too large
262      * @since 9.2
263      */
264     public FieldPVCoordinates<DerivativeStructure> toDerivativeStructurePV(final int order)
265         throws OrekitException {
266 
267         final DSFactory factory;
268         final DerivativeStructure x0;
269         final DerivativeStructure y0;
270         final DerivativeStructure z0;
271         final DerivativeStructure x1;
272         final DerivativeStructure y1;
273         final DerivativeStructure z1;
274         final DerivativeStructure x2;
275         final DerivativeStructure y2;
276         final DerivativeStructure z2;
277         switch(order) {
278             case 0 :
279                 factory = new DSFactory(1, order);
280                 x0 = factory.build(position.getX());
281                 y0 = factory.build(position.getY());
282                 z0 = factory.build(position.getZ());
283                 x1 = factory.build(velocity.getX());
284                 y1 = factory.build(velocity.getY());
285                 z1 = factory.build(velocity.getZ());
286                 x2 = factory.build(acceleration.getX());
287                 y2 = factory.build(acceleration.getY());
288                 z2 = factory.build(acceleration.getZ());
289                 break;
290             case 1 : {
291                 factory = new DSFactory(1, order);
292                 final double   r2            = position.getNormSq();
293                 final double   r             = FastMath.sqrt(r2);
294                 final double   pvOr2         = Vector3D.dotProduct(position, velocity) / r2;
295                 final double   a             = acceleration.getNorm();
296                 final double   aOr           = a / r;
297                 final Vector3D keplerianJerk = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
298                 x0 = factory.build(position.getX(),     velocity.getX());
299                 y0 = factory.build(position.getY(),     velocity.getY());
300                 z0 = factory.build(position.getZ(),     velocity.getZ());
301                 x1 = factory.build(velocity.getX(),     acceleration.getX());
302                 y1 = factory.build(velocity.getY(),     acceleration.getY());
303                 z1 = factory.build(velocity.getZ(),     acceleration.getZ());
304                 x2 = factory.build(acceleration.getX(), keplerianJerk.getX());
305                 y2 = factory.build(acceleration.getY(), keplerianJerk.getY());
306                 z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ());
307                 break;
308             }
309             case 2 : {
310                 factory = new DSFactory(1, order);
311                 final double   r2              = position.getNormSq();
312                 final double   r               = FastMath.sqrt(r2);
313                 final double   pvOr2           = Vector3D.dotProduct(position, velocity) / r2;
314                 final double   a               = acceleration.getNorm();
315                 final double   aOr             = a / r;
316                 final Vector3D keplerianJerk   = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
317                 final double   v2              = velocity.getNormSq();
318                 final double   pa              = Vector3D.dotProduct(position, acceleration);
319                 final double   aj              = Vector3D.dotProduct(acceleration, keplerianJerk);
320                 final Vector3D keplerianJounce = new Vector3D(-3 * (v2 + pa) / r2 + 15 * pvOr2 * pvOr2 - aOr, acceleration,
321                                                               4 * aOr * pvOr2 - aj / (a * r), velocity);
322                 x0 = factory.build(position.getX(),     velocity.getX(),      acceleration.getX());
323                 y0 = factory.build(position.getY(),     velocity.getY(),      acceleration.getY());
324                 z0 = factory.build(position.getZ(),     velocity.getZ(),      acceleration.getZ());
325                 x1 = factory.build(velocity.getX(),     acceleration.getX(),  keplerianJerk.getX());
326                 y1 = factory.build(velocity.getY(),     acceleration.getY(),  keplerianJerk.getY());
327                 z1 = factory.build(velocity.getZ(),     acceleration.getZ(),  keplerianJerk.getZ());
328                 x2 = factory.build(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
329                 y2 = factory.build(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
330                 z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
331                 break;
332             }
333             default :
334                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
335         }
336 
337         return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
338                                         new FieldVector3D<>(x1, y1, z1),
339                                         new FieldVector3D<>(x2, y2, z2));
340 
341     }
342 
343     /** Estimate velocity between two positions.
344      * <p>Estimation is based on a simple fixed velocity translation
345      * during the time interval between the two positions.</p>
346      * @param start start position
347      * @param end end position
348      * @param dt time elapsed between the dates of the two positions
349      * @return velocity allowing to go from start to end positions
350      */
351     public static Vector3D estimateVelocity(final Vector3D start, final Vector3D end, final double dt) {
352         final double scale = 1.0 / dt;
353         return new Vector3D(scale, end, -scale, start);
354     }
355 
356     /** Get a time-shifted state.
357      * <p>
358      * The state can be slightly shifted to close dates. This shift is based on
359      * a simple Taylor expansion. It is <em>not</em> intended as a replacement for
360      * proper orbit propagation (it is not even Keplerian!) but should be sufficient
361      * for either small time shifts or coarse accuracy.
362      * </p>
363      * @param dt time shift in seconds
364      * @return a new state, shifted with respect to the instance (which is immutable)
365      */
366     public PVCoordinates shiftedBy(final double dt) {
367         return new PVCoordinates(new Vector3D(1, position, dt, velocity, 0.5 * dt * dt, acceleration),
368                                  new Vector3D(1, velocity, dt, acceleration),
369                                  acceleration);
370     }
371 
372     /** Gets the position.
373      * @return the position vector (m).
374      */
375     public Vector3D getPosition() {
376         return position;
377     }
378 
379     /** Gets the velocity.
380      * @return the velocity vector (m/s).
381      */
382     public Vector3D getVelocity() {
383         return velocity;
384     }
385 
386     /** Gets the acceleration.
387      * @return the acceleration vector (m/s²).
388      */
389     public Vector3D getAcceleration() {
390         return acceleration;
391     }
392 
393     /** Gets the momentum.
394      * <p>This vector is the p &otimes; v where p is position, v is velocity
395      * and &otimes; is cross product. To get the real physical angular momentum
396      * you need to multiply this vector by the mass.</p>
397      * <p>The returned vector is recomputed each time this method is called, it
398      * is not cached.</p>
399      * @return a new instance of the momentum vector (m²/s).
400      */
401     public Vector3D getMomentum() {
402         return Vector3D.crossProduct(position, velocity);
403     }
404 
405     /**
406      * Get the angular velocity (spin) of this point as seen from the origin.
407      *
408      * <p> The angular velocity vector is parallel to the {@link #getMomentum()
409      * angular momentum} and is computed by ω = p &times; v / ||p||²
410      *
411      * @return the angular velocity vector
412      * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
413      *      Wikipedia</a>
414      */
415     public Vector3D getAngularVelocity() {
416         return this.getMomentum().scalarMultiply(1.0 / this.getPosition().getNormSq());
417     }
418 
419     /** Get the opposite of the instance.
420      * @return a new position-velocity which is opposite to the instance
421      */
422     public PVCoordinates negate() {
423         return new PVCoordinates(position.negate(), velocity.negate(), acceleration.negate());
424     }
425 
426     /** Normalize the position part of the instance.
427      * <p>
428      * The computed coordinates first component (position) will be a
429      * normalized vector, the second component (velocity) will be the
430      * derivative of the first component (hence it will generally not
431      * be normalized), and the third component (acceleration) will be the
432      * derivative of the second component (hence it will generally not
433      * be normalized).
434      * </p>
435      * @return a new instance, with first component normalized and
436      * remaining component computed to have consistent derivatives
437      */
438     public PVCoordinates normalize() {
439         final double   inv     = 1.0 / position.getNorm();
440         final Vector3D u       = new Vector3D(inv, position);
441         final Vector3D v       = new Vector3D(inv, velocity);
442         final Vector3D w       = new Vector3D(inv, acceleration);
443         final double   uv      = Vector3D.dotProduct(u, v);
444         final double   v2      = Vector3D.dotProduct(v, v);
445         final double   uw      = Vector3D.dotProduct(u, w);
446         final Vector3D uDot    = new Vector3D(1, v, -uv, u);
447         final Vector3D uDotDot = new Vector3D(1, w, -2 * uv, v, 3 * uv * uv - v2 - uw, u);
448         return new PVCoordinates(u, uDot, uDotDot);
449     }
450 
451     /** Compute the cross-product of two instances.
452      * @param pv1 first instances
453      * @param pv2 second instances
454      * @return the cross product v1 ^ v2 as a new instance
455      */
456     public static PVCoordinates crossProduct(final PVCoordinates pv1, final PVCoordinates pv2) {
457         final Vector3D p1 = pv1.position;
458         final Vector3D v1 = pv1.velocity;
459         final Vector3D a1 = pv1.acceleration;
460         final Vector3D p2 = pv2.position;
461         final Vector3D v2 = pv2.velocity;
462         final Vector3D a2 = pv2.acceleration;
463         return new PVCoordinates(Vector3D.crossProduct(p1, p2),
464                                  new Vector3D(1, Vector3D.crossProduct(p1, v2),
465                                               1, Vector3D.crossProduct(v1, p2)),
466                                  new Vector3D(1, Vector3D.crossProduct(p1, a2),
467                                               2, Vector3D.crossProduct(v1, v2),
468                                               1, Vector3D.crossProduct(a1, p2)));
469     }
470 
471     /** Return a string representation of this position/velocity pair.
472      * @return string representation of this position/velocity pair
473      */
474     public String toString() {
475         final String comma = ", ";
476         return new StringBuffer().append('{').append("P(").
477                 append(position.getX()).append(comma).
478                 append(position.getY()).append(comma).
479                 append(position.getZ()).append("), V(").
480                 append(velocity.getX()).append(comma).
481                 append(velocity.getY()).append(comma).
482                 append(velocity.getZ()).append("), A(").
483                 append(acceleration.getX()).append(comma).
484                 append(acceleration.getY()).append(comma).
485                 append(acceleration.getZ()).append(")}").toString();
486     }
487 
488     /** Replace the instance with a data transfer object for serialization.
489      * @return data transfer object that will be serialized
490      */
491     private Object writeReplace() {
492         return new DTO(this);
493     }
494 
495     /** Internal class used only for serialization. */
496     private static class DTO implements Serializable {
497 
498         /** Serializable UID. */
499         private static final long serialVersionUID = 20140723L;
500 
501         /** Double values. */
502         private double[] d;
503 
504         /** Simple constructor.
505          * @param pv instance to serialize
506          */
507         private DTO(final PVCoordinates pv) {
508             this.d = new double[] {
509                 pv.getPosition().getX(),     pv.getPosition().getY(),     pv.getPosition().getZ(),
510                 pv.getVelocity().getX(),     pv.getVelocity().getY(),     pv.getVelocity().getZ(),
511                 pv.getAcceleration().getX(), pv.getAcceleration().getY(), pv.getAcceleration().getZ(),
512             };
513         }
514 
515         /** Replace the deserialized data transfer object with a {@link PVCoordinates}.
516          * @return replacement {@link PVCoordinates}
517          */
518         private Object readResolve() {
519             return new PVCoordinates(new Vector3D(d[0], d[1], d[2]),
520                                      new Vector3D(d[3], d[4], d[5]),
521                                      new Vector3D(d[6], d[7], d[8]));
522         }
523 
524     }
525 
526 }