1   /* Copyright 2002-2018 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.attitudes;
18  
19  import org.hipparchus.RealFieldElement;
20  import org.hipparchus.geometry.euclidean.threed.FieldRotation;
21  import org.hipparchus.geometry.euclidean.threed.Rotation;
22  import org.hipparchus.geometry.euclidean.threed.RotationConvention;
23  import org.hipparchus.geometry.euclidean.threed.RotationOrder;
24  import org.orekit.errors.OrekitException;
25  import org.orekit.errors.OrekitMessages;
26  import org.orekit.frames.FieldTransform;
27  import org.orekit.frames.Frame;
28  import org.orekit.frames.LOFType;
29  import org.orekit.frames.Transform;
30  import org.orekit.time.AbsoluteDate;
31  import org.orekit.time.FieldAbsoluteDate;
32  import org.orekit.utils.FieldPVCoordinates;
33  import org.orekit.utils.FieldPVCoordinatesProvider;
34  import org.orekit.utils.PVCoordinates;
35  import org.orekit.utils.PVCoordinatesProvider;
36  
37  
38  /**
39   * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
40   * with respect to a local orbital frame.
41  
42   * <p>
43   * The attitude provider is defined as a rotation offset from some local orbital frame.
44   * @author V&eacute;ronique Pommier-Maurussane
45   */
46  public class LofOffset implements AttitudeProvider {
47  
48      /** Serializable UID. */
49      private static final long serialVersionUID = -713570668596014285L;
50  
51      /** Type of Local Orbital Frame. */
52      private LOFType type;
53  
54      /** Rotation from local orbital frame.  */
55      private final Rotation offset;
56  
57      /** Inertial frame with respect to which orbit should be computed. */
58      private final Frame inertialFrame;
59  
60      /** Create a LOF-aligned attitude.
61       * <p>
62       * Calling this constructor is equivalent to call
63       * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
64       * </p>
65       * @param inertialFrame inertial frame with respect to which orbit should be computed
66       * @param type type of Local Orbital Frame
67       * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
68       */
69      public LofOffset(final Frame inertialFrame, final LOFType type) throws OrekitException {
70          this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
71      }
72  
73      /** Creates new instance.
74       * <p>
75       * An important thing to note is that the rotation order and angles signs used here
76       * are compliant with an <em>attitude</em> definition, i.e. they correspond to
77       * a frame that rotate in a field of fixed vectors. So to retrieve the angles
78       * provided here from the Hipparchus underlying rotation, one has to either use the
79       * {@link RotationConvention#VECTOR_OPERATOR} and <em>revert</em> the rotation, or
80       * to use {@link RotationConvention#FRAME_TRANSFORM} as in the following code snippet:
81       * </p>
82       * <pre>
83       *   LofOffset law          = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
84       *   Rotation  offsetAtt    = law.getAttitude(orbit).getRotation();
85       *   Rotation  alignedAtt   = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
86       *   Rotation  offsetProper = offsetAtt.compose(alignedAtt.revert(), RotationConvention.VECTOR_OPERATOR);
87       *
88       *   // note the call to revert and the conventions in the following statement
89       *   double[] anglesV = offsetProper.revert().getAngles(order, RotationConvention.VECTOR_OPERATOR);
90       *   System.out.println(alpha1 + " == " + anglesV[0]);
91       *   System.out.println(alpha2 + " == " + anglesV[1]);
92       *   System.out.println(alpha3 + " == " + anglesV[2]);
93       *
94       *   // note the conventions in the following statement
95       *   double[] anglesF = offsetProper.getAngles(order, RotationConvention.FRAME_TRANSFORM);
96       *   System.out.println(alpha1 + " == " + anglesF[0]);
97       *   System.out.println(alpha2 + " == " + anglesF[1]);
98       *   System.out.println(alpha3 + " == " + anglesF[2]);
99       * </pre>
100      * @param inertialFrame inertial frame with respect to which orbit should be computed
101      * @param type type of Local Orbital Frame
102      * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
103      * @param alpha1 angle of the first elementary rotation
104      * @param alpha2 angle of the second elementary rotation
105      * @param alpha3 angle of the third elementary rotation
106      * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
107      */
108     public LofOffset(final Frame inertialFrame, final LOFType type,
109                      final RotationOrder order, final double alpha1,
110                      final double alpha2, final double alpha3) throws OrekitException {
111         this.type = type;
112         this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert();
113         if (!inertialFrame.isPseudoInertial()) {
114             throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
115                                       inertialFrame.getName());
116         }
117         this.inertialFrame = inertialFrame;
118     }
119 
120 
121     /** {@inheritDoc} */
122     public Attitude getAttitude(final PVCoordinatesProvider pvProv,
123                                 final AbsoluteDate date, final Frame frame)
124         throws OrekitException {
125 
126         // construction of the local orbital frame, using PV from inertial frame
127         final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
128         final Transform inertialToLof = type.transformFromInertial(date, pv);
129 
130         // take into account the specified start frame (which may not be an inertial one)
131         final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
132         final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
133 
134         // compose with offset rotation
135         return new Attitude(date, frame,
136                             offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR),
137                             offset.applyTo(frameToLof.getRotationRate()),
138                             offset.applyTo(frameToLof.getRotationAcceleration()));
139 
140     }
141 
142     /** {@inheritDoc} */
143     public <T extends RealFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv,
144                                                                         final FieldAbsoluteDate<T> date,
145                                                                         final Frame frame)
146         throws OrekitException {
147 
148         // construction of the local orbital frame, using PV from inertial frame
149         final FieldPVCoordinates<T> pv = pvProv.getPVCoordinates(date, inertialFrame);
150         final FieldTransform<T> inertialToLof = type.transformFromInertial(date, pv);
151 
152         // take into account the specified start frame (which may not be an inertial one)
153         final FieldTransform<T> frameToInertial = frame.getTransformTo(inertialFrame, date);
154         final FieldTransform<T> frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof);
155 
156         // compose with offset rotation
157         return new FieldAttitude<>(date, frame,
158                                    frameToLof.getRotation().compose(offset, RotationConvention.FRAME_TRANSFORM),
159                                    FieldRotation.applyTo(offset, frameToLof.getRotationRate()),
160                                    FieldRotation.applyTo(offset, frameToLof.getRotationAcceleration()));
161 
162     }
163 }