1 /* Copyright 2002-2024 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import java.util.ArrayList;
20 import java.util.Arrays;
21 import java.util.Collections;
22 import java.util.List;
23
24 import org.hipparchus.CalculusFieldElement;
25 import org.hipparchus.Field;
26 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
27 import org.hipparchus.ode.FieldODEIntegrator;
28 import org.hipparchus.util.MathArrays;
29 import org.orekit.annotation.DefaultDataContext;
30 import org.orekit.attitudes.AttitudeProvider;
31 import org.orekit.attitudes.AttitudeProviderModifier;
32 import org.orekit.attitudes.FieldAttitude;
33 import org.orekit.data.DataContext;
34 import org.orekit.errors.OrekitException;
35 import org.orekit.errors.OrekitIllegalArgumentException;
36 import org.orekit.errors.OrekitInternalError;
37 import org.orekit.errors.OrekitMessages;
38 import org.orekit.forces.ForceModel;
39 import org.orekit.forces.gravity.NewtonianAttraction;
40 import org.orekit.frames.Frame;
41 import org.orekit.orbits.FieldOrbit;
42 import org.orekit.orbits.OrbitType;
43 import org.orekit.orbits.PositionAngleType;
44 import org.orekit.propagation.FieldSpacecraftState;
45 import org.orekit.propagation.PropagationType;
46 import org.orekit.propagation.Propagator;
47 import org.orekit.propagation.events.FieldEventDetector;
48 import org.orekit.propagation.integration.FieldAbstractIntegratedPropagator;
49 import org.orekit.propagation.integration.FieldStateMapper;
50 import org.orekit.time.AbsoluteDate;
51 import org.orekit.time.FieldAbsoluteDate;
52 import org.orekit.utils.FieldAbsolutePVCoordinates;
53 import org.orekit.utils.FieldPVCoordinates;
54 import org.orekit.utils.ParameterDriver;
55 import org.orekit.utils.ParameterObserver;
56 import org.orekit.utils.TimeSpanMap;
57 import org.orekit.utils.TimeStampedFieldPVCoordinates;
58
59 /** This class propagates {@link org.orekit.orbits.FieldOrbit orbits} using
60 * numerical integration.
61 * <p>Numerical propagation is much more accurate than analytical propagation
62 * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
63 * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
64 * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
65 * Whereas analytical propagators are configured only thanks to their various
66 * constructors and can be used immediately after construction, numerical propagators
67 * configuration involve setting several parameters between construction time
68 * and propagation time.</p>
69 * <p>The configuration parameters that can be set are:</p>
70 * <ul>
71 * <li>the initial spacecraft state ({@link #setInitialState(FieldSpacecraftState)})</li>
72 * <li>the central attraction coefficient ({@link #setMu(CalculusFieldElement)})</li>
73 * <li>the various force models ({@link #addForceModel(ForceModel)},
74 * {@link #removeForceModels()})</li>
75 * <li>the {@link OrbitType type} of orbital parameters to be used for propagation
76 * ({@link #setOrbitType(OrbitType)}),
77 * <li>the {@link PositionAngleType type} of position angle to be used in orbital parameters
78 * to be used for propagation where it is relevant ({@link
79 * #setPositionAngleType(PositionAngleType)}),
80 * <li>whether {@link org.orekit.propagation.integration.FieldAdditionalDerivativesProvider additional derivatives providers}
81 * should be propagated along with orbital state
82 * ({@link #addAdditionalDerivativesProvider(org.orekit.propagation.integration.FieldAdditionalDerivativesProvider)}),
83 * <li>the discrete events that should be triggered during propagation
84 * ({@link #addEventDetector(FieldEventDetector)},
85 * {@link #clearEventsDetectors()})</li>
86 * <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
87 * </ul>
88 * <p>From these configuration parameters, only the initial state is mandatory. The default
89 * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
90 * {@link PositionAngleType#TRUE true} longitude argument. If the central attraction coefficient
91 * is not explicitly specified, the one used to define the initial orbit will be used.
92 * However, specifying only the initial state and perhaps the central attraction coefficient
93 * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
94 * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
95 * perhaps be more effective.</p>
96 * <p>The underlying numerical integrator set up in the constructor may also have its own
97 * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
98 * are the min, max and perhaps start step size as well as the absolute and/or relative errors
99 * thresholds.</p>
100 * <p>The state that is seen by the integrator is a simple seven elements double array.
101 * The six first elements are either:
102 * <ul>
103 * <li>the {@link org.orekit.orbits.FieldEquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
104 * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
105 * or λ<sub>v</sub>) in meters and radians,</li>
106 * <li>the {@link org.orekit.orbits.FieldKeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
107 * M or E or v) in meters and radians,</li>
108 * <li>the {@link org.orekit.orbits.FieldCircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
109 * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
110 * and radians,</li>
111 * <li>the {@link org.orekit.orbits.FieldCartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
112 * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
113 * </ul>
114 * The last element is the mass in kilograms.
115 * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
116 * equinoctial parameters and true longitude argument:</p>
117 * <pre>
118 * final T zero = field.getZero();
119 * final T dP = zero.add(0.001);
120 * final T minStep = zero.add(0.001);
121 * final T maxStep = zero.add(500);
122 * final T initStep = zero.add(60);
123 * final double[][] tolerance = FieldNumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
124 * AdaptiveStepsizeFieldIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tolerance[0], tolerance[1]);
125 * integrator.setInitialStepSize(initStep);
126 * propagator = new FieldNumericalPropagator<>(field, integrator);
127 * </pre>
128 * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
129 * thus allowing a new propagation to be started from there without recomputing the part already performed.
130 * This behaviour can be changed by calling {@link #setResetAtEnd(boolean)}.
131 * </p>
132 * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
133 * thread-safe.</p>
134
135 * @see FieldSpacecraftState
136 * @see ForceModel
137 * @see org.orekit.propagation.sampling.FieldOrekitStepHandler
138 * @see org.orekit.propagation.sampling.FieldOrekitFixedStepHandler
139 * @see org.orekit.propagation.integration.FieldIntegratedEphemeris
140 * @see FieldTimeDerivativesEquations
141 *
142 * @author Mathieu Roméro
143 * @author Luc Maisonobe
144 * @author Guylaine Prat
145 * @author Fabien Maussion
146 * @author Véronique Pommier-Maurussane
147 * @param <T> type of the field elements
148 */
149 public class FieldNumericalPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractIntegratedPropagator<T> {
150
151 /** Force models used during the extrapolation of the FieldOrbit<T>, without Jacobians. */
152 private final List<ForceModel> forceModels;
153
154 /** Field used by this class.*/
155 private final Field<T> field;
156
157 /** boolean to ignore or not the creation of a NewtonianAttraction. */
158 private boolean ignoreCentralAttraction = false;
159
160 /**
161 * boolean to know if a full attitude (with rates) is needed when computing derivatives for the ODE.
162 */
163 private boolean needFullAttitudeForDerivatives = true;
164
165 /** Create a new instance of NumericalPropagator, based on orbit definition mu.
166 * After creation, the instance is empty, i.e. the attitude provider is set to an
167 * unspecified default law and there are no perturbing forces at all.
168 * This means that if {@link #addForceModel addForceModel} is not
169 * called after creation, the integrated orbit will follow a Keplerian
170 * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
171 * for {@link #setOrbitType(OrbitType) propagation
172 * orbit type} and {@link PositionAngleType#TRUE} for {@link
173 * #setPositionAngleType(PositionAngleType) position angle type}.
174 *
175 * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
176 *
177 * @param integrator numerical integrator to use for propagation.
178 * @param field Field used by default
179 * @see #FieldNumericalPropagator(Field, FieldODEIntegrator, AttitudeProvider)
180 */
181 @DefaultDataContext
182 public FieldNumericalPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator) {
183 this(field, integrator, Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
184 }
185
186 /** Create a new instance of NumericalPropagator, based on orbit definition mu.
187 * After creation, the instance is empty, i.e. the attitude provider is set to an
188 * unspecified default law and there are no perturbing forces at all.
189 * This means that if {@link #addForceModel addForceModel} is not
190 * called after creation, the integrated orbit will follow a Keplerian
191 * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
192 * for {@link #setOrbitType(OrbitType) propagation
193 * orbit type} and {@link PositionAngleType#TRUE} for {@link
194 * #setPositionAngleType(PositionAngleType) position angle type}.
195 * @param field Field used by default
196 * @param integrator numerical integrator to use for propagation.
197 * @param attitudeProvider attitude law to use.
198 * @since 10.1
199 */
200 public FieldNumericalPropagator(final Field<T> field,
201 final FieldODEIntegrator<T> integrator,
202 final AttitudeProvider attitudeProvider) {
203 super(field, integrator, PropagationType.OSCULATING);
204 this.field = field;
205 forceModels = new ArrayList<>();
206 initMapper(field);
207 setAttitudeProvider(attitudeProvider);
208 setMu(field.getZero().add(Double.NaN));
209 clearStepHandlers();
210 setOrbitType(OrbitType.EQUINOCTIAL);
211 setPositionAngleType(PositionAngleType.TRUE);
212 }
213
214 /** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
215 * @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
216 * added automatically if missing
217 */
218 public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
219 this.ignoreCentralAttraction = ignoreCentralAttraction;
220 }
221
222 /** Set the central attraction coefficient μ.
223 * <p>
224 * Setting the central attraction coefficient is
225 * equivalent to {@link #addForceModel(ForceModel) add}
226 * a {@link NewtonianAttraction} force model.
227 * </p>
228 * @param mu central attraction coefficient (m³/s²)
229 * @see #addForceModel(ForceModel)
230 * @see #getAllForceModels()
231 */
232 @Override
233 public void setMu(final T mu) {
234 if (ignoreCentralAttraction) {
235 superSetMu(mu);
236 } else {
237 addForceModel(new NewtonianAttraction(mu.getReal()));
238 }
239 }
240
241 /** Set the central attraction coefficient μ only in upper class.
242 * @param mu central attraction coefficient (m³/s²)
243 */
244 private void superSetMu(final T mu) {
245 super.setMu(mu);
246 }
247
248 /** Check if Newtonian attraction force model is available.
249 * <p>
250 * Newtonian attraction is always the last force model in the list.
251 * </p>
252 * @return true if Newtonian attraction force model is available
253 */
254 private boolean hasNewtonianAttraction() {
255 final int last = forceModels.size() - 1;
256 return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
257 }
258
259 /** Add a force model to the global perturbation model.
260 * <p>If this method is not called at all, the integrated orbit will follow
261 * a Keplerian evolution only.</p>
262 * @param model perturbing {@link ForceModel} to add
263 * @see #removeForceModels()
264 * @see #setMu(CalculusFieldElement)
265 */
266 public void addForceModel(final ForceModel model) {
267
268 if (model instanceof NewtonianAttraction) {
269 // we want to add the central attraction force model
270
271 try {
272 // ensure we are notified of any mu change
273 model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
274 /** {@inheritDoc} */
275 @Override
276 public void valueChanged(final double previousValue, final ParameterDriver driver, final AbsoluteDate date) {
277 // mu PDriver should have only 1 span
278 superSetMu(field.getZero().newInstance(driver.getValue(date)));
279 }
280 /** {@inheritDoc} */
281 @Override
282 public void valueSpanMapChanged(final TimeSpanMap<Double> previousValue, final ParameterDriver driver) {
283 // mu PDriver should have only 1 span
284 superSetMu(field.getZero().newInstance(driver.getValue()));
285 }
286 });
287 } catch (OrekitException oe) {
288 // this should never happen
289 throw new OrekitInternalError(oe);
290 }
291
292 if (hasNewtonianAttraction()) {
293 // there is already a central attraction model, replace it
294 forceModels.set(forceModels.size() - 1, model);
295 } else {
296 // there are no central attraction model yet, add it at the end of the list
297 forceModels.add(model);
298 }
299 } else {
300 // we want to add a perturbing force model
301 if (hasNewtonianAttraction()) {
302 // insert the new force model before Newtonian attraction,
303 // which should always be the last one in the list
304 forceModels.add(forceModels.size() - 1, model);
305 } else {
306 // we only have perturbing force models up to now, just append at the end of the list
307 forceModels.add(model);
308 }
309 }
310
311 }
312
313 /** Remove all perturbing force models from the global perturbation model.
314 * <p>Once all perturbing forces have been removed (and as long as no new force
315 * model is added), the integrated orbit will follow a Keplerian evolution
316 * only.</p>
317 * @see #addForceModel(ForceModel)
318 */
319 public void removeForceModels() {
320 forceModels.clear();
321 }
322
323 /** Get all the force models, perturbing forces and Newtonian attraction included.
324 * @return list of perturbing force models, with Newtonian attraction being the
325 * last one
326 * @see #addForceModel(ForceModel)
327 * @see #setMu(CalculusFieldElement)
328 * @since 9.1
329 */
330 public List<ForceModel> getAllForceModels() {
331 return Collections.unmodifiableList(forceModels);
332 }
333
334 /** Set propagation orbit type.
335 * @param orbitType orbit type to use for propagation
336 */
337 @Override
338 public void setOrbitType(final OrbitType orbitType) {
339 super.setOrbitType(orbitType);
340 }
341
342 /** Get propagation parameter type.
343 * @return orbit type used for propagation
344 */
345 @Override
346 public OrbitType getOrbitType() {
347 return superGetOrbitType();
348 }
349
350 /** Get propagation parameter type.
351 * @return orbit type used for propagation
352 */
353 private OrbitType superGetOrbitType() {
354 return super.getOrbitType();
355 }
356
357 /** Set position angle type.
358 * <p>
359 * The position parameter type is meaningful only if {@link
360 * #getOrbitType() propagation orbit type}
361 * support it. As an example, it is not meaningful for propagation
362 * in {@link OrbitType#CARTESIAN Cartesian} parameters.
363 * </p>
364 * @param positionAngleType angle type to use for propagation
365 */
366 @Override
367 public void setPositionAngleType(final PositionAngleType positionAngleType) {
368 super.setPositionAngleType(positionAngleType);
369 }
370
371 /** Get propagation parameter type.
372 * @return angle type to use for propagation
373 */
374 @Override
375 public PositionAngleType getPositionAngleType() {
376 return super.getPositionAngleType();
377 }
378
379 /** Set the initial state.
380 * @param initialState initial state
381 */
382 public void setInitialState(final FieldSpacecraftState<T> initialState) {
383 resetInitialState(initialState);
384 }
385
386 /** {@inheritDoc} */
387 @Override
388 public void resetInitialState(final FieldSpacecraftState<T> state) {
389 super.resetInitialState(state);
390 if (!hasNewtonianAttraction()) {
391 setMu(state.getMu());
392 }
393 setStartDate(state.getDate());
394 }
395
396 /** {@inheritDoc} */
397 @Override
398 protected AttitudeProvider initializeAttitudeProviderForDerivatives() {
399 final AttitudeProvider attitudeProvider = getAttitudeProvider();
400 return needFullAttitudeForDerivatives ? attitudeProvider :
401 AttitudeProviderModifier.getFrozenAttitudeProvider(attitudeProvider);
402 }
403
404 /** {@inheritDoc} */
405 protected FieldStateMapper<T> createMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
406 final OrbitType orbitType, final PositionAngleType positionAngleType,
407 final AttitudeProvider attitudeProvider, final Frame frame) {
408 return new FieldOsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
409 }
410
411 /** Internal mapper using directly osculating parameters. */
412 private class FieldOsculatingMapper extends FieldStateMapper<T> {
413
414 /** Simple constructor.
415 * <p>
416 * The position parameter type is meaningful only if {@link
417 * #getOrbitType() propagation orbit type}
418 * support it. As an example, it is not meaningful for propagation
419 * in {@link OrbitType#CARTESIAN Cartesian} parameters.
420 * </p>
421 * @param referenceDate reference date
422 * @param mu central attraction coefficient (m³/s²)
423 * @param orbitType orbit type to use for mapping
424 * @param positionAngleType angle type to use for propagation
425 * @param attitudeProvider attitude provider
426 * @param frame inertial frame
427 */
428 FieldOsculatingMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
429 final OrbitType orbitType, final PositionAngleType positionAngleType,
430 final AttitudeProvider attitudeProvider, final Frame frame) {
431 super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
432 }
433
434 /** {@inheritDoc} */
435 public FieldSpacecraftState<T> mapArrayToState(final FieldAbsoluteDate<T> date, final T[] y, final T[] yDot,
436 final PropagationType type) {
437 // the parameter type is ignored for the Numerical Propagator
438
439 final T mass = y[6];
440 if (mass.getReal() <= 0.0) {
441 throw new OrekitException(OrekitMessages.NOT_POSITIVE_SPACECRAFT_MASS, mass);
442 }
443
444 if (superGetOrbitType() == null) {
445 // propagation uses absolute position-velocity-acceleration
446 final FieldVector3D<T> p = new FieldVector3D<>(y[0], y[1], y[2]);
447 final FieldVector3D<T> v = new FieldVector3D<>(y[3], y[4], y[5]);
448 final FieldVector3D<T> a;
449 final FieldAbsolutePVCoordinates<T> absPva;
450 if (yDot == null) {
451 absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, FieldVector3D.getZero(date.getField())));
452 } else {
453 a = new FieldVector3D<>(yDot[3], yDot[4], yDot[5]);
454 absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, a));
455 }
456
457 final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
458 return new FieldSpacecraftState<>(absPva, attitude, mass);
459 } else {
460 // propagation uses regular orbits
461 final FieldOrbit<T> orbit = superGetOrbitType().mapArrayToOrbit(y, yDot, super.getPositionAngleType(), date, getMu(), getFrame());
462 final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
463 return new FieldSpacecraftState<>(orbit, attitude, mass);
464 }
465 }
466
467 /** {@inheritDoc} */
468 public void mapStateToArray(final FieldSpacecraftState<T> state, final T[] y, final T[] yDot) {
469 if (superGetOrbitType() == null) {
470 // propagation uses absolute position-velocity-acceleration
471 final FieldVector3D<T> p = state.getAbsPVA().getPosition();
472 final FieldVector3D<T> v = state.getAbsPVA().getVelocity();
473 y[0] = p.getX();
474 y[1] = p.getY();
475 y[2] = p.getZ();
476 y[3] = v.getX();
477 y[4] = v.getY();
478 y[5] = v.getZ();
479 y[6] = state.getMass();
480 }
481 else {
482 superGetOrbitType().mapOrbitToArray(state.getOrbit(), super.getPositionAngleType(), y, yDot);
483 y[6] = state.getMass();
484 }
485 }
486
487 }
488
489 /** {@inheritDoc} */
490 protected MainStateEquations<T> getMainStateEquations(final FieldODEIntegrator<T> integrator) {
491 return new Main(integrator);
492 }
493
494 /** Internal class for osculating parameters integration. */
495 private class Main implements MainStateEquations<T>, FieldTimeDerivativesEquations<T> {
496
497 /** Derivatives array. */
498 private final T[] yDot;
499
500 /** Current state. */
501 private FieldSpacecraftState<T> currentState;
502
503 /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
504 private T[][] jacobian;
505
506 /** Flag keeping track whether Jacobian matrix needs to be recomputed or not. */
507 private boolean recomputingJacobian;
508
509 /** Simple constructor.
510 * @param integrator numerical integrator to use for propagation.
511 */
512 Main(final FieldODEIntegrator<T> integrator) {
513
514 this.yDot = MathArrays.buildArray(getField(), 7);
515 this.jacobian = MathArrays.buildArray(getField(), 6, 6);
516 this.recomputingJacobian = true;
517
518 for (final ForceModel forceModel : forceModels) {
519 forceModel.getFieldEventDetectors(getField()).forEach(detector -> setUpEventDetector(integrator, detector));
520 }
521
522 // default value for Jacobian is identity
523 for (int i = 0; i < jacobian.length; ++i) {
524 Arrays.fill(jacobian[i], getField().getZero());
525 jacobian[i][i] = getField().getOne();
526 }
527
528 }
529
530 /** {@inheritDoc} */
531 @Override
532 public void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target) {
533 needFullAttitudeForDerivatives = forceModels.stream().anyMatch(ForceModel::dependsOnAttitudeRate);
534
535 forceModels.forEach(fm -> fm.init(initialState, target));
536
537 final int numberOfForces = forceModels.size();
538 final OrbitType orbitType = superGetOrbitType();
539 if (orbitType != null && orbitType != OrbitType.CARTESIAN && numberOfForces > 0) {
540 if (numberOfForces > 1) {
541 recomputingJacobian = true;
542 } else {
543 recomputingJacobian = !(forceModels.get(0) instanceof NewtonianAttraction);
544 }
545 } else {
546 recomputingJacobian = false;
547 }
548 }
549
550 /** {@inheritDoc} */
551 @Override
552 public T[] computeDerivatives(final FieldSpacecraftState<T> state) {
553 final T zero = state.getA().getField().getZero();
554 currentState = state;
555 Arrays.fill(yDot, zero);
556 if (recomputingJacobian) {
557 // propagation uses Jacobian matrix of orbital parameters w.r.t. Cartesian ones
558 currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
559 }
560
561 // compute the contributions of all perturbing forces,
562 // using the Kepler contribution at the end since
563 // NewtonianAttraction is always the last instance in the list
564 for (final ForceModel forceModel : forceModels) {
565 forceModel.addContribution(state, this);
566 }
567
568 if (superGetOrbitType() == null) {
569 // position derivative is velocity, and was not added above in the force models
570 // (it is added when orbit type is non-null because NewtonianAttraction considers it)
571 final FieldVector3D<T> velocity = currentState.getPVCoordinates().getVelocity();
572 yDot[0] = yDot[0].add(velocity.getX());
573 yDot[1] = yDot[1].add(velocity.getY());
574 yDot[2] = yDot[2].add(velocity.getZ());
575 }
576
577 return yDot.clone();
578
579 }
580
581 /** {@inheritDoc} */
582 @Override
583 public void addKeplerContribution(final T mu) {
584 if (superGetOrbitType() == null) {
585
586 // if mu is neither 0 nor NaN, we want to include Newtonian acceleration
587 if (mu.getReal() > 0) {
588 // velocity derivative is Newtonian acceleration
589 final FieldVector3D<T> position = currentState.getPosition();
590 final T r2 = position.getNormSq();
591 final T coeff = r2.multiply(r2.sqrt()).reciprocal().negate().multiply(mu);
592 yDot[3] = yDot[3].add(coeff.multiply(position.getX()));
593 yDot[4] = yDot[4].add(coeff.multiply(position.getY()));
594 yDot[5] = yDot[5].add(coeff.multiply(position.getZ()));
595 }
596
597 } else {
598 // propagation uses regular orbits
599 currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
600 }
601 }
602
603 /** {@inheritDoc} */
604 @Override
605 public void addNonKeplerianAcceleration(final FieldVector3D<T> gamma) {
606 for (int i = 0; i < 6; ++i) {
607 final T[] jRow = jacobian[i];
608 yDot[i] = yDot[i].add(jRow[3].linearCombination(jRow[3], gamma.getX(),
609 jRow[4], gamma.getY(),
610 jRow[5], gamma.getZ()));
611 }
612 }
613
614 /** {@inheritDoc} */
615 @Override
616 public void addMassDerivative(final T q) {
617 if (q.getReal() > 0) {
618 throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
619 }
620 yDot[6] = yDot[6].add(q);
621 }
622
623 }
624
625 /** Estimate tolerance vectors for integrators.
626 * <p>
627 * The errors are estimated from partial derivatives properties of orbits,
628 * starting from a scalar position error specified by the user.
629 * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
630 * we get at constant energy (i.e. on a Keplerian trajectory):
631 * <pre>
632 * V r² |dV| = mu |dr|
633 * </pre>
634 * So we deduce a scalar velocity error consistent with the position error.
635 * From here, we apply orbits Jacobians matrices to get consistent errors
636 * on orbital parameters.
637 * <p>
638 * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
639 * are only local estimates, not global ones. So some care must be taken when using
640 * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
641 * will guarantee a 1mm error position after several orbits integration.
642 * </p>
643 * @param dP user specified position error
644 * @param orbit reference orbit
645 * @param type propagation type for the meaning of the tolerance vectors elements
646 * (it may be different from {@code orbit.getType()})
647 * @return a two rows array, row 0 being the absolute tolerance error and row 1
648 * being the relative tolerance error
649 * @param <T> elements type
650 */
651 public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final FieldOrbit<T> orbit, final OrbitType type) {
652
653 // estimate the scalar velocity error
654 final FieldPVCoordinates<T> pv = orbit.getPVCoordinates();
655 final T r2 = pv.getPosition().getNormSq();
656 final T v = pv.getVelocity().getNorm();
657 final T dV = dP.multiply(orbit.getMu()).divide(v.multiply(r2));
658
659 return tolerances(dP, dV, orbit, type);
660
661 }
662
663 /** Estimate tolerance vectors for integrators when propagating in orbits.
664 * <p>
665 * The errors are estimated from partial derivatives properties of orbits,
666 * starting from scalar position and velocity errors specified by the user.
667 * <p>
668 * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
669 * are only local estimates, not global ones. So some care must be taken when using
670 * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
671 * will guarantee a 1mm error position after several orbits integration.
672 * </p>
673 * @param <T> elements type
674 * @param dP user specified position error
675 * @param dV user specified velocity error
676 * @param orbit reference orbit
677 * @param type propagation type for the meaning of the tolerance vectors elements
678 * (it may be different from {@code orbit.getType()})
679 * @return a two rows array, row 0 being the absolute tolerance error and row 1
680 * being the relative tolerance error
681 * @since 10.3
682 */
683 public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final T dV,
684 final FieldOrbit<T> orbit, final OrbitType type) {
685
686 final double[] absTol = new double[7];
687 final double[] relTol = new double[7];
688
689 // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
690 // with trust, this often has no influence at all on propagation
691 absTol[6] = 1.0e-6;
692
693 if (type == OrbitType.CARTESIAN) {
694 absTol[0] = dP.getReal();
695 absTol[1] = dP.getReal();
696 absTol[2] = dP.getReal();
697 absTol[3] = dV.getReal();
698 absTol[4] = dV.getReal();
699 absTol[5] = dV.getReal();
700 } else {
701
702 // convert the orbit to the desired type
703 final T[][] jacobian = MathArrays.buildArray(dP.getField(), 6, 6);
704 final FieldOrbit<T> converted = type.convertType(orbit);
705 converted.getJacobianWrtCartesian(PositionAngleType.TRUE, jacobian);
706
707 for (int i = 0; i < 6; ++i) {
708 final T[] row = jacobian[i];
709 absTol[i] = row[0].abs().multiply(dP).
710 add(row[1].abs().multiply(dP)).
711 add(row[2].abs().multiply(dP)).
712 add(row[3].abs().multiply(dV)).
713 add(row[4].abs().multiply(dV)).
714 add(row[5].abs().multiply(dV)).
715 getReal();
716 if (Double.isNaN(absTol[i])) {
717 throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type);
718 }
719 }
720
721 }
722
723 Arrays.fill(relTol, dP.divide(orbit.getPosition().getNormSq().sqrt()).getReal());
724
725 return new double[][] { absTol, relTol };
726
727 }
728
729 }
730