1   /* Copyright 2002-2024 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.forces;
18  
19  import java.util.stream.Stream;
20  
21  import org.hipparchus.CalculusFieldElement;
22  import org.hipparchus.Field;
23  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24  import org.hipparchus.geometry.euclidean.threed.Vector3D;
25  import org.orekit.propagation.FieldSpacecraftState;
26  import org.orekit.propagation.SpacecraftState;
27  import org.orekit.propagation.events.EventDetector;
28  import org.orekit.propagation.events.EventDetectorsProvider;
29  import org.orekit.propagation.events.FieldEventDetector;
30  import org.orekit.propagation.numerical.FieldTimeDerivativesEquations;
31  import org.orekit.propagation.numerical.TimeDerivativesEquations;
32  import org.orekit.time.AbsoluteDate;
33  import org.orekit.time.FieldAbsoluteDate;
34  import org.orekit.utils.ParameterDriversProvider;
35  
36  /** This interface represents a force modifying spacecraft motion.
37   *
38   * <p>
39   * Objects implementing this interface are intended to be added to a
40   * {@link org.orekit.propagation.numerical.NumericalPropagator numerical propagator}
41   * before the propagation is started.
42   *
43   * <p>
44   * The propagator will call at each step the {@link #addContribution(SpacecraftState,
45   * TimeDerivativesEquations)} method. The force model instance will extract all the
46   * state data it needs (date, position, velocity, frame, attitude, mass) from the first
47   * parameter. From these state data, it will compute the perturbing acceleration. It
48   * will then add this acceleration to the second parameter which will take thins
49   * contribution into account and will use the Gauss equations to evaluate its impact
50   * on the global state derivative.
51   * </p>
52   * <p>
53   * Force models which create discontinuous acceleration patterns (typically for maneuvers
54   * start/stop or solar eclipses entry/exit) must provide one or more {@link
55   * org.orekit.propagation.events.EventDetector events detectors} to the
56   * propagator thanks to their {@link #getEventDetectors()} method. This method
57   * is called once just before propagation starts. The events states will be checked by
58   * the propagator to ensure accurate propagation and proper events handling.
59   * </p>
60   *
61   * @author Mathieu Rom&eacute;ro
62   * @author Luc Maisonobe
63   * @author V&eacute;ronique Pommier-Maurussane
64   * @author Melina Vanel
65   */
66  public interface ForceModel extends ParameterDriversProvider, EventDetectorsProvider {
67  
68      /**
69       * Initialize the force model at the start of propagation. This method will be called
70       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
71       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
72       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
73       *
74       * <p> The default implementation of this method does nothing.</p>
75       *
76       * @param initialState spacecraft state at the start of propagation.
77       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
78       */
79      default void init(SpacecraftState initialState, AbsoluteDate target) {
80      }
81  
82      /**
83       * Initialize the force model at the start of propagation. This method will be called
84       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
85       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
86       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
87       *
88       * <p> The default implementation of this method does nothing.</p>
89       *
90       * @param initialState spacecraft state at the start of propagation.
91       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
92       * @param <T> type of the elements
93       */
94      default <T extends CalculusFieldElement<T>> void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target) {
95          init(initialState.toSpacecraftState(), target.toAbsoluteDate());
96      }
97  
98      /** {@inheritDoc}.*/
99      @Override
100     default Stream<EventDetector> getEventDetectors() {
101         return getEventDetectors(getParametersDrivers());
102     }
103 
104     /** {@inheritDoc}.*/
105     @Override
106     default <T extends CalculusFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventDetectors(Field<T> field) {
107         return getFieldEventDetectors(field, getParametersDrivers());
108     }
109 
110     /** Compute the contribution of the force model to the perturbing
111      * acceleration.
112      * <p>
113      * The default implementation simply adds the {@link #acceleration(SpacecraftState, double[]) acceleration}
114      * as a non-Keplerian acceleration.
115      * </p>
116      * @param s current state information: date, kinematics, attitude
117      * @param adder object where the contribution should be added
118      */
119     default void addContribution(SpacecraftState s, TimeDerivativesEquations adder) {
120         adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate())));
121     }
122 
123     /** Compute the contribution of the force model to the perturbing
124      * acceleration.
125      * @param s current state information: date, kinematics, attitude
126      * @param adder object where the contribution should be added
127      * @param <T> type of the elements
128      */
129     default <T extends CalculusFieldElement<T>> void addContribution(FieldSpacecraftState<T> s, FieldTimeDerivativesEquations<T> adder) {
130         adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate().getField(), s.getDate())));
131     }
132 
133     /** Check if force model depends on position only at a given, fixed date.
134      * @return true if force model depends on position only, false
135      * if it depends on velocity, either directly or due to a dependency
136      * on attitude
137      * @since 9.0
138      */
139     boolean dependsOnPositionOnly();
140 
141     /** Check if force model depends on attitude's rotation rate or acceleration at a given, fixed date.
142      * If false, it essentially means that at most the attitude's rotation is used when computing the acceleration vector.
143      * The default implementation returns false as common forces do not.
144      * @return true if force model depends on attitude derivatives
145      * @since 12.1
146      */
147     default boolean dependsOnAttitudeRate() {
148         return false;
149     }
150 
151     /** Compute acceleration.
152      * @param s current state information: date, kinematics, attitude
153      * @param parameters values of the force model parameters at state date,
154      * only 1 value for each parameterDriver
155      * @return acceleration in same frame as state
156      * @since 9.0
157      */
158     Vector3D acceleration(SpacecraftState s, double[] parameters);
159 
160     /** Compute acceleration.
161      * @param s current state information: date, kinematics, attitude
162      * @param parameters values of the force model parameters at state date,
163      * only 1 value for each parameterDriver
164      * @return acceleration in same frame as state
165      * @param <T> type of the elements
166      * @since 9.0
167      */
168     <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(FieldSpacecraftState<T> s, T[] parameters);
169 }