1 /* Copyright 2010-2011 Centre National d'Études Spatiales
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import java.util.IdentityHashMap;
20 import java.util.Map;
21
22 import org.hipparchus.analysis.differentiation.Gradient;
23 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24 import org.orekit.errors.OrekitException;
25 import org.orekit.errors.OrekitMessages;
26 import org.orekit.forces.ForceModel;
27 import org.orekit.propagation.FieldSpacecraftState;
28 import org.orekit.propagation.SpacecraftState;
29 import org.orekit.propagation.integration.AdditionalEquations;
30 import org.orekit.utils.ParameterDriver;
31 import org.orekit.utils.ParameterDriversList;
32
33 /** Set of {@link AdditionalEquations additional equations} computing the partial derivatives
34 * of the state (orbit) with respect to initial state and force models parameters.
35 * <p>
36 * This set of equations are automatically added to a {@link NumericalPropagator numerical propagator}
37 * in order to compute partial derivatives of the orbit along with the orbit itself. This is
38 * useful for example in orbit determination applications.
39 * </p>
40 * <p>
41 * The partial derivatives with respect to initial state can be either dimension 6
42 * (orbit only) or 7 (orbit and mass).
43 * </p>
44 * <p>
45 * The partial derivatives with respect to force models parameters has a dimension
46 * equal to the number of selected parameters. Parameters selection is implemented at
47 * {@link ForceModel force models} level. Users must retrieve a {@link ParameterDriver
48 * parameter driver} using {@link ForceModel#getParameterDriver(String)} and then
49 * select it by calling {@link ParameterDriver#setSelected(boolean) setSelected(true)}.
50 * </p>
51 * <p>
52 * If several force models provide different {@link ParameterDriver drivers} for the
53 * same parameter name, selecting any of these drivers has the side effect of
54 * selecting all the drivers for this shared parameter. In this case, the partial
55 * derivatives will be the sum of the partial derivatives contributed by the
56 * corresponding force models. This case typically arises for central attraction
57 * coefficient, which has an influence on {@link org.orekit.forces.gravity.NewtonianAttraction
58 * Newtonian attraction}, {@link org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel
59 * gravity field}, and {@link org.orekit.forces.gravity.Relativity relativity}.
60 * </p>
61 * @author Véronique Pommier-Maurussane
62 * @author Luc Maisonobe
63 */
64 public class PartialDerivativesEquations implements AdditionalEquations {
65
66 /** Propagator computing state evolution. */
67 private final NumericalPropagator propagator;
68
69 /** Selected parameters for Jacobian computation. */
70 private ParameterDriversList selected;
71
72 /** Parameters map. */
73 private Map<ParameterDriver, Integer> map;
74
75 /** Name. */
76 private final String name;
77
78 /** Flag for Jacobian matrices initialization. */
79 private boolean initialized;
80
81 /** Simple constructor.
82 * <p>
83 * Upon construction, this set of equations is <em>automatically</em> added to
84 * the propagator by calling its {@link
85 * NumericalPropagator#addAdditionalEquations(AdditionalEquations)} method. So
86 * there is no need to call this method explicitly for these equations.
87 * </p>
88 * @param name name of the partial derivatives equations
89 * @param propagator the propagator that will handle the orbit propagation
90 */
91 public PartialDerivativesEquations(final String name, final NumericalPropagator propagator) {
92 this.name = name;
93 this.selected = null;
94 this.map = null;
95 this.propagator = propagator;
96 this.initialized = false;
97 propagator.addAdditionalEquations(this);
98 }
99
100 /** {@inheritDoc} */
101 public String getName() {
102 return name;
103 }
104
105 /** Freeze the selected parameters from the force models.
106 */
107 private void freezeParametersSelection() {
108 if (selected == null) {
109
110 // first pass: gather all parameters, binding similar names together
111 selected = new ParameterDriversList();
112 for (final ForceModel provider : propagator.getAllForceModels()) {
113 for (final ParameterDriver driver : provider.getParametersDrivers()) {
114 selected.add(driver);
115 }
116 }
117
118 // second pass: now that shared parameter names are bound together,
119 // their selections status have been synchronized, we can filter them
120 selected.filter(true);
121
122 // third pass: sort parameters lexicographically
123 selected.sort();
124
125 // fourth pass: set up a map between parameters drivers and matrices columns
126 map = new IdentityHashMap<ParameterDriver, Integer>();
127 int parameterIndex = 0;
128 for (final ParameterDriver selectedDriver : selected.getDrivers()) {
129 for (final ForceModel provider : propagator.getAllForceModels()) {
130 for (final ParameterDriver driver : provider.getParametersDrivers()) {
131 if (driver.getName().equals(selectedDriver.getName())) {
132 map.put(driver, parameterIndex);
133 }
134 }
135 }
136 ++parameterIndex;
137 }
138
139 }
140 }
141
142 /** Get the selected parameters, in Jacobian matrix column order.
143 * <p>
144 * The force models parameters for which partial derivatives are desired,
145 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
146 * before this method is called, so the proper list is returned.
147 * </p>
148 * @return selected parameters, in Jacobian matrix column order which
149 * is lexicographic order
150 */
151 public ParameterDriversList getSelectedParameters() {
152 freezeParametersSelection();
153 return selected;
154 }
155
156 /** Set the initial value of the Jacobian with respect to state and parameter.
157 * <p>
158 * This method is equivalent to call {@link #setInitialJacobians(SpacecraftState,
159 * double[][], double[][])} with dYdY0 set to the identity matrix and dYdP set
160 * to a zero matrix.
161 * </p>
162 * <p>
163 * The force models parameters for which partial derivatives are desired,
164 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
165 * before this method is called, so proper matrices dimensions are used.
166 * </p>
167 * @param s0 initial state
168 * @return state with initial Jacobians added
169 * @see #getSelectedParameters()
170 * @since 9.0
171 */
172 public SpacecraftState setInitialJacobians(final SpacecraftState s0) {
173 freezeParametersSelection();
174 final int stateDimension = 6;
175 final double[][] dYdY0 = new double[stateDimension][stateDimension];
176 final double[][] dYdP = new double[stateDimension][selected.getNbParams()];
177 for (int i = 0; i < stateDimension; ++i) {
178 dYdY0[i][i] = 1.0;
179 }
180 return setInitialJacobians(s0, dYdY0, dYdP);
181 }
182
183 /** Set the initial value of the Jacobian with respect to state and parameter.
184 * <p>
185 * The returned state must be added to the propagator (it is not done
186 * automatically, as the user may need to add more states to it).
187 * </p>
188 * <p>
189 * The force models parameters for which partial derivatives are desired,
190 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
191 * before this method is called, and the {@code dY1dP} matrix dimension <em>must</em>
192 * be consistent with the selection.
193 * </p>
194 * @param s1 current state
195 * @param dY1dY0 Jacobian of current state at time t₁ with respect
196 * to state at some previous time t₀ (must be 6x6)
197 * @param dY1dP Jacobian of current state at time t₁ with respect
198 * to parameters (may be null if no parameters are selected)
199 * @return state with initial Jacobians added
200 * @see #getSelectedParameters()
201 */
202 public SpacecraftState setInitialJacobians(final SpacecraftState s1,
203 final double[][] dY1dY0, final double[][] dY1dP) {
204
205 freezeParametersSelection();
206
207 // Check dimensions
208 final int stateDim = dY1dY0.length;
209 if (stateDim != 6 || stateDim != dY1dY0[0].length) {
210 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_6X6,
211 stateDim, dY1dY0[0].length);
212 }
213 if (dY1dP != null && stateDim != dY1dP.length) {
214 throw new OrekitException(OrekitMessages.STATE_AND_PARAMETERS_JACOBIANS_ROWS_MISMATCH,
215 stateDim, dY1dP.length);
216 }
217 if (dY1dP == null && selected.getNbParams() != 0 ||
218 dY1dP != null && selected.getNbParams() != dY1dP[0].length) {
219 throw new OrekitException(new OrekitException(OrekitMessages.INITIAL_MATRIX_AND_PARAMETERS_NUMBER_MISMATCH,
220 dY1dP == null ? 0 : dY1dP[0].length, selected.getNbParams()));
221 }
222
223 // store the matrices as a single dimension array
224 initialized = true;
225 final JacobiansMapper mapper = getMapper();
226 final double[] p = new double[mapper.getAdditionalStateDimension()];
227 mapper.setInitialJacobians(s1, dY1dY0, dY1dP, p);
228
229 // set value in propagator
230 return s1.addAdditionalState(name, p);
231
232 }
233
234 /** Get a mapper between two-dimensional Jacobians and one-dimensional additional state.
235 * @return a mapper between two-dimensional Jacobians and one-dimensional additional state,
236 * with the same name as the instance
237 * @see #setInitialJacobians(SpacecraftState)
238 * @see #setInitialJacobians(SpacecraftState, double[][], double[][])
239 */
240 public JacobiansMapper getMapper() {
241 if (!initialized) {
242 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_INITIALIZED);
243 }
244 return new JacobiansMapper(name, selected,
245 propagator.getOrbitType(),
246 propagator.getPositionAngleType());
247 }
248
249 /** {@inheritDoc} */
250 public double[] computeDerivatives(final SpacecraftState s, final double[] pDot) {
251
252 // initialize acceleration Jacobians to zero
253 final int paramDim = selected.getNbParams();
254 final int dim = 3;
255 final double[][] dAccdParam = new double[dim][paramDim];
256 final double[][] dAccdPos = new double[dim][dim];
257 final double[][] dAccdVel = new double[dim][dim];
258
259 final NumericalGradientConverter fullConverter = new NumericalGradientConverter(s, 6, propagator.getAttitudeProvider());
260 final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(s, 3, propagator.getAttitudeProvider());
261
262 // compute acceleration Jacobians, finishing with the largest force: Newtonian attraction
263 for (final ForceModel forceModel : propagator.getAllForceModels()) {
264
265 final NumericalGradientConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
266 final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
267 final Gradient[] parameters = converter.getParameters(dsState, forceModel);
268
269 final FieldVector3D<Gradient> acceleration = forceModel.acceleration(dsState, parameters);
270 final double[] derivativesX = acceleration.getX().getGradient();
271 final double[] derivativesY = acceleration.getY().getGradient();
272 final double[] derivativesZ = acceleration.getZ().getGradient();
273
274 // update Jacobians with respect to state
275 addToRow(derivativesX, 0, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
276 addToRow(derivativesY, 1, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
277 addToRow(derivativesZ, 2, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
278
279 int index = converter.getFreeStateParameters();
280 for (ParameterDriver driver : forceModel.getParametersDrivers()) {
281 if (driver.isSelected()) {
282 final int parameterIndex = map.get(driver);
283 dAccdParam[0][parameterIndex] += derivativesX[index];
284 dAccdParam[1][parameterIndex] += derivativesY[index];
285 dAccdParam[2][parameterIndex] += derivativesZ[index];
286 ++index;
287 }
288 }
289
290 }
291
292 // the variational equations of the complete state Jacobian matrix have the following form:
293
294 // [ | ] [ | ] [ | ]
295 // [ Adot | Bdot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ A | B ]
296 // [ | ] [ | ] [ | ]
297 // ---------+--------- ------------------+------------------- * ------+------
298 // [ | ] [ | ] [ | ]
299 // [ Cdot | Ddot ] = [ dAcc/dPos | dAcc/dVel ] [ C | D ]
300 // [ | ] [ | ] [ | ]
301
302 // The A, B, C and D sub-matrices and their derivatives (Adot ...) are 3x3 matrices
303
304 // The expanded multiplication above can be rewritten to take into account
305 // the fixed values found in the sub-matrices in the left factor. This leads to:
306
307 // [ Adot ] = [ C ]
308 // [ Bdot ] = [ D ]
309 // [ Cdot ] = [ dAcc/dPos ] * [ A ] + [ dAcc/dVel ] * [ C ]
310 // [ Ddot ] = [ dAcc/dPos ] * [ B ] + [ dAcc/dVel ] * [ D ]
311
312 // The following loops compute these expressions taking care of the mapping of the
313 // (A, B, C, D) matrices into the single dimension array p and of the mapping of the
314 // (Adot, Bdot, Cdot, Ddot) matrices into the single dimension array pDot.
315
316 // copy C and E into Adot and Bdot
317 final int stateDim = 6;
318 final double[] p = s.getAdditionalState(getName());
319 System.arraycopy(p, dim * stateDim, pDot, 0, dim * stateDim);
320
321 // compute Cdot and Ddot
322 for (int i = 0; i < dim; ++i) {
323 final double[] dAdPi = dAccdPos[i];
324 final double[] dAdVi = dAccdVel[i];
325 for (int j = 0; j < stateDim; ++j) {
326 pDot[(dim + i) * stateDim + j] =
327 dAdPi[0] * p[j] + dAdPi[1] * p[j + stateDim] + dAdPi[2] * p[j + 2 * stateDim] +
328 dAdVi[0] * p[j + 3 * stateDim] + dAdVi[1] * p[j + 4 * stateDim] + dAdVi[2] * p[j + 5 * stateDim];
329 }
330 }
331
332 for (int k = 0; k < paramDim; ++k) {
333 // the variational equations of the parameters Jacobian matrix are computed
334 // one column at a time, they have the following form:
335 // [ ] [ | ] [ ] [ ]
336 // [ Edot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ E ] [ dVel/dParam = 0 ]
337 // [ ] [ | ] [ ] [ ]
338 // -------- ------------------+------------------- * ----- + --------------------
339 // [ ] [ | ] [ ] [ ]
340 // [ Fdot ] = [ dAcc/dPos | dAcc/dVel ] [ F ] [ dAcc/dParam ]
341 // [ ] [ | ] [ ] [ ]
342
343 // The E and F sub-columns and their derivatives (Edot, Fdot) are 3 elements columns.
344
345 // The expanded multiplication and addition above can be rewritten to take into
346 // account the fixed values found in the sub-matrices in the left factor. This leads to:
347
348 // [ Edot ] = [ F ]
349 // [ Fdot ] = [ dAcc/dPos ] * [ E ] + [ dAcc/dVel ] * [ F ] + [ dAcc/dParam ]
350
351 // The following loops compute these expressions taking care of the mapping of the
352 // (E, F) columns into the single dimension array p and of the mapping of the
353 // (Edot, Fdot) columns into the single dimension array pDot.
354
355 // copy F into Edot
356 final int columnTop = stateDim * stateDim + k;
357 pDot[columnTop] = p[columnTop + 3 * paramDim];
358 pDot[columnTop + paramDim] = p[columnTop + 4 * paramDim];
359 pDot[columnTop + 2 * paramDim] = p[columnTop + 5 * paramDim];
360
361 // compute Fdot
362 for (int i = 0; i < dim; ++i) {
363 final double[] dAdPi = dAccdPos[i];
364 final double[] dAdVi = dAccdVel[i];
365 pDot[columnTop + (dim + i) * paramDim] =
366 dAccdParam[i][k] +
367 dAdPi[0] * p[columnTop] + dAdPi[1] * p[columnTop + paramDim] + dAdPi[2] * p[columnTop + 2 * paramDim] +
368 dAdVi[0] * p[columnTop + 3 * paramDim] + dAdVi[1] * p[columnTop + 4 * paramDim] + dAdVi[2] * p[columnTop + 5 * paramDim];
369 }
370
371 }
372
373 // these equations have no effect on the main state itself
374 return null;
375
376 }
377
378 /** Get the flag for the initialization of the state jacobian.
379 * @return true if the state jacobian is initialized
380 * @since 10.2
381 */
382 public boolean isInitialize() {
383 return initialized;
384 }
385
386 /** Fill Jacobians rows.
387 * @param derivatives derivatives of a component of acceleration (along either x, y or z)
388 * @param index component index (0 for x, 1 for y, 2 for z)
389 * @param freeStateParameters number of free parameters, either 3 (position),
390 * 6 (position-velocity) or 7 (position-velocity-mass)
391 * @param dAccdPos Jacobian of acceleration with respect to spacecraft position
392 * @param dAccdVel Jacobian of acceleration with respect to spacecraft velocity
393 */
394 private void addToRow(final double[] derivatives, final int index, final int freeStateParameters,
395 final double[][] dAccdPos, final double[][] dAccdVel) {
396
397 for (int i = 0; i < 3; ++i) {
398 dAccdPos[index][i] += derivatives[i];
399 }
400 if (freeStateParameters > 3) {
401 for (int i = 0; i < 3; ++i) {
402 dAccdVel[index][i] += derivatives[i + 3];
403 }
404 }
405
406 }
407
408 }
409