1 /* Copyright 2002-2021 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import java.util.ArrayList;
20 import java.util.Arrays;
21 import java.util.Collections;
22 import java.util.List;
23
24 import org.hipparchus.geometry.euclidean.threed.Vector3D;
25 import org.hipparchus.ode.ODEIntegrator;
26 import org.hipparchus.util.FastMath;
27 import org.orekit.annotation.DefaultDataContext;
28 import org.orekit.attitudes.Attitude;
29 import org.orekit.attitudes.AttitudeProvider;
30 import org.orekit.data.DataContext;
31 import org.orekit.errors.OrekitException;
32 import org.orekit.errors.OrekitIllegalArgumentException;
33 import org.orekit.errors.OrekitInternalError;
34 import org.orekit.errors.OrekitMessages;
35 import org.orekit.forces.ForceModel;
36 import org.orekit.forces.gravity.NewtonianAttraction;
37 import org.orekit.forces.inertia.InertialForces;
38 import org.orekit.frames.Frame;
39 import org.orekit.orbits.Orbit;
40 import org.orekit.orbits.OrbitType;
41 import org.orekit.orbits.PositionAngle;
42 import org.orekit.propagation.PropagationType;
43 import org.orekit.propagation.Propagator;
44 import org.orekit.propagation.SpacecraftState;
45 import org.orekit.propagation.events.EventDetector;
46 import org.orekit.propagation.integration.AbstractIntegratedPropagator;
47 import org.orekit.propagation.integration.StateMapper;
48 import org.orekit.time.AbsoluteDate;
49 import org.orekit.utils.AbsolutePVCoordinates;
50 import org.orekit.utils.PVCoordinates;
51 import org.orekit.utils.ParameterDriver;
52 import org.orekit.utils.ParameterObserver;
53 import org.orekit.utils.TimeStampedPVCoordinates;
54
55 /** This class propagates {@link org.orekit.orbits.Orbit orbits} using
56 * numerical integration.
57 * <p>Numerical propagation is much more accurate than analytical propagation
58 * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
59 * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
60 * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
61 * Whereas analytical propagators are configured only thanks to their various
62 * constructors and can be used immediately after construction, numerical propagators
63 * configuration involve setting several parameters between construction time
64 * and propagation time.</p>
65 * <p>The configuration parameters that can be set are:</p>
66 * <ul>
67 * <li>the initial spacecraft state ({@link #setInitialState(SpacecraftState)})</li>
68 * <li>the central attraction coefficient ({@link #setMu(double)})</li>
69 * <li>the various force models ({@link #addForceModel(ForceModel)},
70 * {@link #removeForceModels()})</li>
71 * <li>the {@link OrbitType type} of orbital parameters to be used for propagation
72 * ({@link #setOrbitType(OrbitType)}),
73 * <li>the {@link PositionAngle type} of position angle to be used in orbital parameters
74 * to be used for propagation where it is relevant ({@link
75 * #setPositionAngleType(PositionAngle)}),
76 * <li>whether {@link org.orekit.propagation.integration.AdditionalEquations additional equations}
77 * (for example {@link PartialDerivativesEquations Jacobians}) should be propagated along with orbital state
78 * ({@link #addAdditionalEquations(org.orekit.propagation.integration.AdditionalEquations)}),
79 * <li>the discrete events that should be triggered during propagation
80 * ({@link #addEventDetector(EventDetector)},
81 * {@link #clearEventsDetectors()})</li>
82 * <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
83 * </ul>
84 * <p>From these configuration parameters, only the initial state is mandatory. The default
85 * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
86 * {@link PositionAngle#TRUE true} longitude argument. If the central attraction coefficient
87 * is not explicitly specified, the one used to define the initial orbit will be used.
88 * However, specifying only the initial state and perhaps the central attraction coefficient
89 * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
90 * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
91 * perhaps be more effective.</p>
92 * <p>The underlying numerical integrator set up in the constructor may also have its own
93 * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
94 * are the min, max and perhaps start step size as well as the absolute and/or relative errors
95 * thresholds.</p>
96 * <p>The state that is seen by the integrator is a simple seven elements double array.
97 * The six first elements are either:
98 * <ul>
99 * <li>the {@link org.orekit.orbits.EquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
100 * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
101 * or λ<sub>v</sub>) in meters and radians,</li>
102 * <li>the {@link org.orekit.orbits.KeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
103 * M or E or v) in meters and radians,</li>
104 * <li>the {@link org.orekit.orbits.CircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
105 * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
106 * and radians,</li>
107 * <li>the {@link org.orekit.orbits.CartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
108 * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
109 * </ul>
110 * <p> The last element is the mass in kilograms.
111 *
112 * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
113 * equinoctial parameters and true longitude argument:</p>
114 * <pre>
115 * final double dP = 0.001;
116 * final double minStep = 0.001;
117 * final double maxStep = 500;
118 * final double initStep = 60;
119 * final double[][] tolerance = NumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
120 * AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]);
121 * integrator.setInitialStepSize(initStep);
122 * propagator = new NumericalPropagator(integrator);
123 * </pre>
124 * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
125 * thus allowing a new propagation to be started from there without recomputing the part already performed.
126 * This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
127 * </p>
128 * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
129 * thread-safe.</p>
130 *
131 * @see SpacecraftState
132 * @see ForceModel
133 * @see org.orekit.propagation.sampling.OrekitStepHandler
134 * @see org.orekit.propagation.sampling.OrekitFixedStepHandler
135 * @see org.orekit.propagation.integration.IntegratedEphemeris
136 * @see TimeDerivativesEquations
137 *
138 * @author Mathieu Roméro
139 * @author Luc Maisonobe
140 * @author Guylaine Prat
141 * @author Fabien Maussion
142 * @author Véronique Pommier-Maurussane
143 */
144 public class NumericalPropagator extends AbstractIntegratedPropagator {
145
146 /** Force models used during the extrapolation of the orbit. */
147 private final List<ForceModel> forceModels;
148
149 /** boolean to ignore or not the creation of a NewtonianAttraction. */
150 private boolean ignoreCentralAttraction = false;
151
152 /** Create a new instance of NumericalPropagator, based on orbit definition mu.
153 * After creation, the instance is empty, i.e. the attitude provider is set to an
154 * unspecified default law and there are no perturbing forces at all.
155 * This means that if {@link #addForceModel addForceModel} is not
156 * called after creation, the integrated orbit will follow a Keplerian
157 * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
158 * for {@link #setOrbitType(OrbitType) propagation
159 * orbit type} and {@link PositionAngle#TRUE} for {@link
160 * #setPositionAngleType(PositionAngle) position angle type}.
161 *
162 * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
163 *
164 * @param integrator numerical integrator to use for propagation.
165 * @see #NumericalPropagator(ODEIntegrator, AttitudeProvider)
166 */
167 @DefaultDataContext
168 public NumericalPropagator(final ODEIntegrator integrator) {
169 this(integrator,
170 Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
171 }
172
173 /** Create a new instance of NumericalPropagator, based on orbit definition mu.
174 * After creation, the instance is empty, i.e. the attitude provider is set to an
175 * unspecified default law and there are no perturbing forces at all.
176 * This means that if {@link #addForceModel addForceModel} is not
177 * called after creation, the integrated orbit will follow a Keplerian
178 * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
179 * for {@link #setOrbitType(OrbitType) propagation
180 * orbit type} and {@link PositionAngle#TRUE} for {@link
181 * #setPositionAngleType(PositionAngle) position angle type}.
182 * @param integrator numerical integrator to use for propagation.
183 * @param attitudeProvider the attitude law.
184 * @since 10.1
185 */
186 public NumericalPropagator(final ODEIntegrator integrator,
187 final AttitudeProvider attitudeProvider) {
188 super(integrator, PropagationType.MEAN);
189 forceModels = new ArrayList<ForceModel>();
190 initMapper();
191 setAttitudeProvider(attitudeProvider);
192 clearStepHandlers();
193 setOrbitType(OrbitType.EQUINOCTIAL);
194 setPositionAngleType(PositionAngle.TRUE);
195 }
196
197 /** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
198 * @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
199 * added automatically if missing
200 */
201 public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
202 this.ignoreCentralAttraction = ignoreCentralAttraction;
203 }
204
205 /** Set the central attraction coefficient μ.
206 * <p>
207 * Setting the central attraction coefficient is
208 * equivalent to {@link #addForceModel(ForceModel) add}
209 * a {@link NewtonianAttraction} force model.
210 * </p>
211 * @param mu central attraction coefficient (m³/s²)
212 * @see #addForceModel(ForceModel)
213 * @see #getAllForceModels()
214 */
215 public void setMu(final double mu) {
216 if (ignoreCentralAttraction) {
217 superSetMu(mu);
218 } else {
219 addForceModel(new NewtonianAttraction(mu));
220 }
221 }
222
223 /** Set the central attraction coefficient μ only in upper class.
224 * @param mu central attraction coefficient (m³/s²)
225 */
226 private void superSetMu(final double mu) {
227 super.setMu(mu);
228 }
229
230 /** Check if Newtonian attraction force model is available.
231 * <p>
232 * Newtonian attraction is always the last force model in the list.
233 * </p>
234 * @return true if Newtonian attraction force model is available
235 */
236 private boolean hasNewtonianAttraction() {
237 final int last = forceModels.size() - 1;
238 return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
239 }
240
241 /** Add a force model.
242 * <p>If this method is not called at all, the integrated orbit will follow
243 * a Keplerian evolution only.</p>
244 * @param model {@link ForceModel} to add (it can be either a perturbing force
245 * model or an instance of {@link NewtonianAttraction})
246 * @see #removeForceModels()
247 * @see #setMu(double)
248 */
249 public void addForceModel(final ForceModel model) {
250
251 if (model instanceof NewtonianAttraction) {
252 // we want to add the central attraction force model
253
254 try {
255 // ensure we are notified of any mu change
256 model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
257 /** {@inheritDoc} */
258 @Override
259 public void valueChanged(final double previousValue, final ParameterDriver driver) {
260 superSetMu(driver.getValue());
261 }
262 });
263 } catch (OrekitException oe) {
264 // this should never happen
265 throw new OrekitInternalError(oe);
266 }
267
268 if (hasNewtonianAttraction()) {
269 // there is already a central attraction model, replace it
270 forceModels.set(forceModels.size() - 1, model);
271 } else {
272 // there are no central attraction model yet, add it at the end of the list
273 forceModels.add(model);
274 }
275 } else {
276 // we want to add a perturbing force model
277 if (hasNewtonianAttraction()) {
278 // insert the new force model before Newtonian attraction,
279 // which should always be the last one in the list
280 forceModels.add(forceModels.size() - 1, model);
281 } else {
282 // we only have perturbing force models up to now, just append at the end of the list
283 forceModels.add(model);
284 }
285 }
286
287 }
288
289 /** Remove all force models (except central attraction).
290 * <p>Once all perturbing forces have been removed (and as long as no new force
291 * model is added), the integrated orbit will follow a Keplerian evolution
292 * only.</p>
293 * @see #addForceModel(ForceModel)
294 */
295 public void removeForceModels() {
296 final int last = forceModels.size() - 1;
297 if (hasNewtonianAttraction()) {
298 // preserve the Newtonian attraction model at the end
299 final ForceModel newton = forceModels.get(last);
300 forceModels.clear();
301 forceModels.add(newton);
302 } else {
303 forceModels.clear();
304 }
305 }
306
307 /** Get all the force models, perturbing forces and Newtonian attraction included.
308 * @return list of perturbing force models, with Newtonian attraction being the
309 * last one
310 * @see #addForceModel(ForceModel)
311 * @see #setMu(double)
312 */
313 public List<ForceModel> getAllForceModels() {
314 return Collections.unmodifiableList(forceModels);
315 }
316
317 /** Set propagation orbit type.
318 * @param orbitType orbit type to use for propagation, null for
319 * propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
320 */
321 public void setOrbitType(final OrbitType orbitType) {
322 super.setOrbitType(orbitType);
323 }
324
325 /** Get propagation parameter type.
326 * @return orbit type used for propagation, null for
327 * propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
328 */
329 public OrbitType getOrbitType() {
330 return super.getOrbitType();
331 }
332
333 /** Set position angle type.
334 * <p>
335 * The position parameter type is meaningful only if {@link
336 * #getOrbitType() propagation orbit type}
337 * support it. As an example, it is not meaningful for propagation
338 * in {@link OrbitType#CARTESIAN Cartesian} parameters.
339 * </p>
340 * @param positionAngleType angle type to use for propagation
341 */
342 public void setPositionAngleType(final PositionAngle positionAngleType) {
343 super.setPositionAngleType(positionAngleType);
344 }
345
346 /** Get propagation parameter type.
347 * @return angle type to use for propagation
348 */
349 public PositionAngle getPositionAngleType() {
350 return super.getPositionAngleType();
351 }
352
353 /** Set the initial state.
354 * @param initialState initial state
355 */
356 public void setInitialState(final SpacecraftState initialState) {
357 resetInitialState(initialState);
358 }
359
360 /** {@inheritDoc} */
361 public void resetInitialState(final SpacecraftState state) {
362 super.resetInitialState(state);
363 if (!hasNewtonianAttraction()) {
364 // use the state to define central attraction
365 setMu(state.getMu());
366 }
367 setStartDate(state.getDate());
368 }
369
370 /** {@inheritDoc} */
371 public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate date, final Frame frame) {
372 return propagate(date).getPVCoordinates(frame);
373 }
374
375 /** {@inheritDoc} */
376 protected StateMapper createMapper(final AbsoluteDate referenceDate, final double mu,
377 final OrbitType orbitType, final PositionAngle positionAngleType,
378 final AttitudeProvider attitudeProvider, final Frame frame) {
379 return new OsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
380 }
381
382 /** Internal mapper using directly osculating parameters. */
383 private static class OsculatingMapper extends StateMapper {
384
385 /** Simple constructor.
386 * <p>
387 * The position parameter type is meaningful only if {@link
388 * #getOrbitType() propagation orbit type}
389 * support it. As an example, it is not meaningful for propagation
390 * in {@link OrbitType#CARTESIAN Cartesian} parameters.
391 * </p>
392 * @param referenceDate reference date
393 * @param mu central attraction coefficient (m³/s²)
394 * @param orbitType orbit type to use for mapping (can be null for {@link AbsolutePVCoordinates})
395 * @param positionAngleType angle type to use for propagation
396 * @param attitudeProvider attitude provider
397 * @param frame inertial frame
398 */
399 OsculatingMapper(final AbsoluteDate referenceDate, final double mu,
400 final OrbitType orbitType, final PositionAngle positionAngleType,
401 final AttitudeProvider attitudeProvider, final Frame frame) {
402 super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
403 }
404
405 /** {@inheritDoc} */
406 public SpacecraftState mapArrayToState(final AbsoluteDate date, final double[] y, final double[] yDot,
407 final PropagationType type) {
408 // the parameter type is ignored for the Numerical Propagator
409
410 final double mass = y[6];
411 if (mass <= 0.0) {
412 throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
413 }
414
415 if (getOrbitType() == null) {
416 // propagation uses absolute position-velocity-acceleration
417 final Vector3D p = new Vector3D(y[0], y[1], y[2]);
418 final Vector3D v = new Vector3D(y[3], y[4], y[5]);
419 final Vector3D a;
420 final AbsolutePVCoordinates absPva;
421 if (yDot == null) {
422 absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v));
423 } else {
424 a = new Vector3D(yDot[3], yDot[4], yDot[5]);
425 absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v, a));
426 }
427
428 final Attitude attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
429 return new SpacecraftState(absPva, attitude, mass);
430 } else {
431 // propagation uses regular orbits
432 final Orbit orbit = getOrbitType().mapArrayToOrbit(y, yDot, getPositionAngleType(), date, getMu(), getFrame());
433 final Attitude attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
434
435 return new SpacecraftState(orbit, attitude, mass);
436 }
437
438 }
439
440 /** {@inheritDoc} */
441 public void mapStateToArray(final SpacecraftState state, final double[] y, final double[] yDot) {
442 if (getOrbitType() == null) {
443 // propagation uses absolute position-velocity-acceleration
444 final Vector3D p = state.getAbsPVA().getPosition();
445 final Vector3D v = state.getAbsPVA().getVelocity();
446 y[0] = p.getX();
447 y[1] = p.getY();
448 y[2] = p.getZ();
449 y[3] = v.getX();
450 y[4] = v.getY();
451 y[5] = v.getZ();
452 y[6] = state.getMass();
453 }
454 else {
455 getOrbitType().mapOrbitToArray(state.getOrbit(), getPositionAngleType(), y, yDot);
456 y[6] = state.getMass();
457 }
458 }
459
460 }
461
462 /** {@inheritDoc} */
463 protected MainStateEquations getMainStateEquations(final ODEIntegrator integrator) {
464 return new Main(integrator);
465 }
466
467 /** Internal class for osculating parameters integration. */
468 private class Main implements MainStateEquations, TimeDerivativesEquations {
469
470 /** Derivatives array. */
471 private final double[] yDot;
472
473 /** Current state. */
474 private SpacecraftState currentState;
475
476 /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
477 private double[][] jacobian;
478
479 /** Simple constructor.
480 * @param integrator numerical integrator to use for propagation.
481 */
482 Main(final ODEIntegrator integrator) {
483
484 this.yDot = new double[7];
485 this.jacobian = new double[6][6];
486
487 for (final ForceModel forceModel : forceModels) {
488 forceModel.getEventsDetectors().forEach(detector -> setUpEventDetector(integrator, detector));
489 }
490
491 if (getOrbitType() == null) {
492 // propagation uses absolute position-velocity-acceleration
493 // we can set Jacobian once and for all
494 for (int i = 0; i < jacobian.length; ++i) {
495 Arrays.fill(jacobian[i], 0.0);
496 jacobian[i][i] = 1.0;
497 }
498 }
499
500 }
501
502 /** {@inheritDoc} */
503 @Override
504 public void init(final SpacecraftState initialState, final AbsoluteDate target) {
505 for (final ForceModel forceModel : forceModels) {
506 forceModel.init(initialState, target);
507 }
508 }
509
510 /** {@inheritDoc} */
511 @Override
512 public double[] computeDerivatives(final SpacecraftState state) {
513
514 currentState = state;
515 Arrays.fill(yDot, 0.0);
516 if (getOrbitType() != null) {
517 // propagation uses regular orbits
518 currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
519 }
520
521 // compute the contributions of all perturbing forces,
522 // using the Kepler contribution at the end since
523 // NewtonianAttraction is always the last instance in the list
524 for (final ForceModel forceModel : forceModels) {
525 forceModel.addContribution(state, this);
526 }
527
528 if (getOrbitType() == null) {
529 // position derivative is velocity, and was not added above in the force models
530 // (it is added when orbit type is non-null because NewtonianAttraction considers it)
531 final Vector3D velocity = currentState.getPVCoordinates().getVelocity();
532 yDot[0] += velocity.getX();
533 yDot[1] += velocity.getY();
534 yDot[2] += velocity.getZ();
535 }
536
537
538 return yDot.clone();
539
540 }
541
542 /** {@inheritDoc} */
543 @Override
544 public void addKeplerContribution(final double mu) {
545 if (getOrbitType() == null) {
546
547 // if mu is neither 0 nor NaN, we want to include Newtonian acceleration
548 if (mu > 0) {
549 // velocity derivative is Newtonian acceleration
550 final Vector3D position = currentState.getPVCoordinates().getPosition();
551 final double r2 = position.getNormSq();
552 final double coeff = -mu / (r2 * FastMath.sqrt(r2));
553 yDot[3] += coeff * position.getX();
554 yDot[4] += coeff * position.getY();
555 yDot[5] += coeff * position.getZ();
556 }
557
558 } else {
559 // propagation uses regular orbits
560 currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
561 }
562 }
563
564 /** {@inheritDoc} */
565 public void addNonKeplerianAcceleration(final Vector3D gamma) {
566 for (int i = 0; i < 6; ++i) {
567 final double[] jRow = jacobian[i];
568 yDot[i] += jRow[3] * gamma.getX() + jRow[4] * gamma.getY() + jRow[5] * gamma.getZ();
569 }
570 }
571
572 /** {@inheritDoc} */
573 @Override
574 public void addMassDerivative(final double q) {
575 if (q > 0) {
576 throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
577 }
578 yDot[6] += q;
579 }
580
581 }
582
583 /** Estimate tolerance vectors for integrators when propagating in absolute position-velocity-acceleration.
584 * @param dP user specified position error
585 * @param absPva reference absolute position-velocity-acceleration
586 * @return a two rows array, row 0 being the absolute tolerance error and row 1
587 * being the relative tolerance error
588 * @see NumericalPropagator#tolerances(double, Orbit, OrbitType)
589 */
590 public static double[][] tolerances(final double dP, final AbsolutePVCoordinates absPva) {
591
592 final double relative = dP / absPva.getPosition().getNorm();
593 final double dV = relative * absPva.getVelocity().getNorm();
594
595 final double[] absTol = new double[7];
596 final double[] relTol = new double[7];
597
598 absTol[0] = dP;
599 absTol[1] = dP;
600 absTol[2] = dP;
601 absTol[3] = dV;
602 absTol[4] = dV;
603 absTol[5] = dV;
604
605 // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
606 // with trust, this often has no influence at all on propagation
607 absTol[6] = 1.0e-6;
608
609 Arrays.fill(relTol, relative);
610
611 return new double[][] {
612 absTol, relTol
613 };
614
615 }
616
617 /** Estimate tolerance vectors for integrators when propagating in orbits.
618 * <p>
619 * The errors are estimated from partial derivatives properties of orbits,
620 * starting from a scalar position error specified by the user.
621 * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
622 * we get at constant energy (i.e. on a Keplerian trajectory):
623 * <pre>
624 * V² r |dV| = mu |dr|
625 * </pre>
626 * <p> So we deduce a scalar velocity error consistent with the position error.
627 * From here, we apply orbits Jacobians matrices to get consistent errors
628 * on orbital parameters.
629 *
630 * <p>
631 * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
632 * are only local estimates, not global ones. So some care must be taken when using
633 * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
634 * will guarantee a 1mm error position after several orbits integration.
635 * </p>
636 * @param dP user specified position error
637 * @param orbit reference orbit
638 * @param type propagation type for the meaning of the tolerance vectors elements
639 * (it may be different from {@code orbit.getType()})
640 * @return a two rows array, row 0 being the absolute tolerance error and row 1
641 * being the relative tolerance error
642 */
643 public static double[][] tolerances(final double dP, final Orbit orbit, final OrbitType type) {
644
645 // estimate the scalar velocity error
646 final PVCoordinates pv = orbit.getPVCoordinates();
647 final double r2 = pv.getPosition().getNormSq();
648 final double v = pv.getVelocity().getNorm();
649 final double dV = orbit.getMu() * dP / (v * r2);
650
651 return tolerances(dP, dV, orbit, type);
652
653 }
654
655 /** Estimate tolerance vectors for integrators when propagating in orbits.
656 * <p>
657 * The errors are estimated from partial derivatives properties of orbits,
658 * starting from scalar position and velocity errors specified by the user.
659 * <p>
660 * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
661 * are only local estimates, not global ones. So some care must be taken when using
662 * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
663 * will guarantee a 1mm error position after several orbits integration.
664 * </p>
665 * @param dP user specified position error
666 * @param dV user specified velocity error
667 * @param orbit reference orbit
668 * @param type propagation type for the meaning of the tolerance vectors elements
669 * (it may be different from {@code orbit.getType()})
670 * @return a two rows array, row 0 being the absolute tolerance error and row 1
671 * being the relative tolerance error
672 * @since 10.3
673 */
674 public static double[][] tolerances(final double dP, final double dV,
675 final Orbit orbit, final OrbitType type) {
676
677 final double[] absTol = new double[7];
678 final double[] relTol = new double[7];
679
680 // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
681 // with trust, this often has no influence at all on propagation
682 absTol[6] = 1.0e-6;
683
684 if (type == OrbitType.CARTESIAN) {
685 absTol[0] = dP;
686 absTol[1] = dP;
687 absTol[2] = dP;
688 absTol[3] = dV;
689 absTol[4] = dV;
690 absTol[5] = dV;
691 } else {
692
693 // convert the orbit to the desired type
694 final double[][] jacobian = new double[6][6];
695 final Orbit converted = type.convertType(orbit);
696 converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian);
697
698 for (int i = 0; i < 6; ++i) {
699 final double[] row = jacobian[i];
700 absTol[i] = FastMath.abs(row[0]) * dP +
701 FastMath.abs(row[1]) * dP +
702 FastMath.abs(row[2]) * dP +
703 FastMath.abs(row[3]) * dV +
704 FastMath.abs(row[4]) * dV +
705 FastMath.abs(row[5]) * dV;
706 if (Double.isNaN(absTol[i])) {
707 throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type);
708 }
709 }
710
711 }
712
713 Arrays.fill(relTol, dP / FastMath.sqrt(orbit.getPVCoordinates().getPosition().getNormSq()));
714
715 return new double[][] {
716 absTol, relTol
717 };
718
719 }
720
721 /** {@inheritDoc} */
722 @Override
723 protected void beforeIntegration(final SpacecraftState initialState, final AbsoluteDate tEnd) {
724
725 if (!getFrame().isPseudoInertial()) {
726
727 // inspect all force models to find InertialForces
728 for (ForceModel force : forceModels) {
729 if (force instanceof InertialForces) {
730 return;
731 }
732 }
733
734 // throw exception if no inertial forces found
735 throw new OrekitException(OrekitMessages.INERTIAL_FORCE_MODEL_MISSING, getFrame().getName());
736
737 }
738
739 }
740
741 }