1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation;
18  
19  import java.util.Collection;
20  import java.util.List;
21  
22  import org.hipparchus.geometry.euclidean.threed.Rotation;
23  import org.hipparchus.geometry.euclidean.threed.Vector3D;
24  import org.hipparchus.linear.RealMatrix;
25  import org.orekit.attitudes.AttitudeProvider;
26  import org.orekit.attitudes.FrameAlignedProvider;
27  import org.orekit.frames.Frame;
28  import org.orekit.frames.Frames;
29  import org.orekit.frames.KinematicTransform;
30  import org.orekit.orbits.PositionAngleType;
31  import org.orekit.propagation.events.EventDetector;
32  import org.orekit.propagation.sampling.OrekitFixedStepHandler;
33  import org.orekit.propagation.sampling.OrekitStepHandler;
34  import org.orekit.propagation.sampling.StepHandlerMultiplexer;
35  import org.orekit.time.AbsoluteDate;
36  import org.orekit.utils.DoubleArrayDictionary;
37  import org.orekit.utils.PVCoordinatesProvider;
38  import org.orekit.utils.TimeStampedPVCoordinates;
39  
40  /** This interface provides a way to propagate an orbit at any time.
41   *
42   * <p>This interface is the top-level abstraction for orbit propagation.
43   * It only allows propagation to a predefined date.
44   * It is implemented by analytical models which have no time limit,
45   * by orbit readers based on external data files, by numerical integrators
46   * using rich force models and by continuous models built after numerical
47   * integration has been completed and dense output data as been
48   * gathered.</p>
49   * <p>Note that one single propagator cannot be called from multiple threads.
50   * Its configuration can be changed as there is at least a {@link
51   * #resetInitialState(SpacecraftState)} method, and even propagators that do
52   * not support resetting state (like the {@link
53   * org.orekit.propagation.analytical.tle.TLEPropagator TLEPropagator} do
54   * cache some internal data during computation. However, as long as they
55   * are configured with independent building blocks (mainly event handlers
56   * and step handlers that may preserve some internal state), and as long
57   * as they are called from one thread only, they <em>can</em> be used in
58   * multi-threaded applications. Synchronizing several propagators to run in
59   * parallel is also possible using {@link PropagatorsParallelizer}.</p>
60   * @author Luc Maisonobe
61   * @author V&eacute;ronique Pommier-Maurussane
62   *
63   */
64  
65  public interface Propagator extends PVCoordinatesProvider {
66  
67      /** Default mass. */
68      double DEFAULT_MASS = 1000.0;
69  
70      /**
71       * Get a default law using the given frames.
72       *
73       * @param frames the set of frames to use.
74       * @return attitude law.
75       */
76      static AttitudeProvider getDefaultLaw(final Frames frames) {
77          return new FrameAlignedProvider(Rotation.IDENTITY, frames.getEME2000());
78      }
79  
80      /** Get the multiplexer holding all step handlers.
81       * @return multiplexer holding all step handlers
82       * @since 11.0
83       */
84      StepHandlerMultiplexer getMultiplexer();
85  
86      /** Remove all step handlers.
87       * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}</p>
88       * @see #getMultiplexer()
89       * @see StepHandlerMultiplexer#clear()
90       * @since 11.0
91       */
92      default void clearStepHandlers() {
93          getMultiplexer().clear();
94      }
95  
96      /** Set a single handler for fixed stepsizes.
97       * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}
98       * followed by {@code getMultiplexer().add(h, handler)}</p>
99       * @param h fixed stepsize (s)
100      * @param handler handler called at the end of each finalized step
101      * @see #getMultiplexer()
102      * @see StepHandlerMultiplexer#add(double, OrekitFixedStepHandler)
103      * @since 11.0
104      */
105     default void setStepHandler(final double h, final OrekitFixedStepHandler handler) {
106         getMultiplexer().clear();
107         getMultiplexer().add(h, handler);
108     }
109 
110     /** Set a single handler for variable stepsizes.
111      * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}
112      * followed by {@code getMultiplexer().add(handler)}</p>
113      * @param handler handler called at the end of each finalized step
114      * @see #getMultiplexer()
115      * @see StepHandlerMultiplexer#add(OrekitStepHandler)
116      * @since 11.0
117      */
118     default void setStepHandler(final OrekitStepHandler handler) {
119         getMultiplexer().clear();
120         getMultiplexer().add(handler);
121     }
122 
123     /**
124      * Set up an ephemeris generator that will monitor the propagation for building
125      * an ephemeris from it once completed.
126      *
127      * <p>
128      * This generator can be used when the user needs fast random access to the orbit
129      * state at any time between the initial and target times. A typical example is the
130      * implementation of search and iterative algorithms that may navigate forward and
131      * backward inside the propagation range before finding their result even if the
132      * propagator used is integration-based and only goes from one initial time to one
133      * target time.
134      * </p>
135      * <p>
136      * Beware that when used with integration-based propagators, the generator will
137      * store <strong>all</strong> intermediate results. It is therefore memory intensive
138      * for long integration-based ranges and high precision/short time steps. When
139      * used with analytical propagators, the generator only stores start/stop time
140      * and a reference to the analytical propagator itself to call it back as needed,
141      * so it is less memory intensive.
142      * </p>
143      * <p>
144      * The returned ephemeris generator will be initially empty, it will be filled
145      * with propagation data when a subsequent call to either {@link #propagate(AbsoluteDate)
146      * propagate(target)} or {@link #propagate(AbsoluteDate, AbsoluteDate)
147      * propagate(start, target)} is called. The proper way to use this method is
148      * therefore to do:
149      * </p>
150      * <pre>
151      *   EphemerisGenerator generator = propagator.getEphemerisGenerator();
152      *   propagator.propagate(target);
153      *   BoundedPropagator ephemeris = generator.getGeneratedEphemeris();
154      * </pre>
155      * @return ephemeris generator
156      */
157     EphemerisGenerator getEphemerisGenerator();
158 
159     /** Get the propagator initial state.
160      * @return initial state
161      */
162     SpacecraftState getInitialState();
163 
164     /** Reset the propagator initial state.
165      * @param state new initial state to consider
166      */
167     void resetInitialState(SpacecraftState state);
168 
169     /** Add a set of user-specified data to be computed along with the orbit propagation.
170      * @param additionalDataProvider provider for additional data
171      */
172     void addAdditionalDataProvider(AdditionalDataProvider<?> additionalDataProvider);
173 
174     /** Get an unmodifiable list of providers for additional data.
175      * @return providers for the additional data
176      */
177     List<AdditionalDataProvider<?>> getAdditionalDataProviders();
178 
179     /** Check if an additional data is managed.
180      * <p>
181      * Managed data are the ones for which the propagators know how to compute
182      * its evolution. They correspond to additional data for which a
183      * {@link AdditionalDataProvider provider} has been registered by calling the
184      * {@link #addAdditionalDataProvider(AdditionalDataProvider) addAdditionalDataProvider} method.
185      * </p>
186      * <p>
187      * Additional data that are present in the {@link #getInitialState() initial state}
188      * but have no evolution method registered are <em>not</em> considered as managed data.
189      * These unmanaged additional data are not lost during propagation, though. Their
190      * value are piecewise constant between state resets that may change them if some
191      * event handler {@link
192      * org.orekit.propagation.events.handlers.EventHandler#resetState(EventDetector,
193      * SpacecraftState) resetState} method is called at an event occurrence and happens
194      * to change the unmanaged additional data.
195      * </p>
196      * @param name name of the additional data
197      * @return true if the additional data is managed
198      */
199     boolean isAdditionalDataManaged(String name);
200 
201     /** Get all the names of all managed additional data.
202      * @return names of all managed additional data
203      */
204     String[] getManagedAdditionalData();
205 
206     /** Add an event detector.
207      * @param detector event detector to add
208      * @see #clearEventsDetectors()
209      * @see #getEventDetectors()
210      * @param <T> class type for the generic version
211      */
212     <T extends EventDetector> void addEventDetector(T detector);
213 
214     /** Get all the events detectors that have been added.
215      * @return an unmodifiable collection of the added detectors
216      * @see #addEventDetector(EventDetector)
217      * @see #clearEventsDetectors()
218      */
219     Collection<EventDetector> getEventDetectors();
220 
221     /** Remove all events detectors.
222      * @see #addEventDetector(EventDetector)
223      * @see #getEventDetectors()
224      */
225     void clearEventsDetectors();
226 
227     /** Get attitude provider.
228      * @return attitude provider
229      */
230     AttitudeProvider getAttitudeProvider();
231 
232     /** Set attitude provider.
233      * @param attitudeProvider attitude provider
234      */
235     void setAttitudeProvider(AttitudeProvider attitudeProvider);
236 
237     /** Get the frame in which the orbit is propagated.
238      * <p>
239      * The propagation frame is the definition frame of the initial
240      * state, so this method should be called after this state has
241      * been set, otherwise it may return null.
242      * </p>
243      * @return frame in which the orbit is propagated
244      * @see #resetInitialState(SpacecraftState)
245      */
246     Frame getFrame();
247 
248     /** Set up computation of State Transition Matrix and Jacobians matrix with respect to parameters.
249      * <p>
250      * If this method is called, both State Transition Matrix and Jacobians with respect to the
251      * force models parameters that will be selected when propagation starts will be automatically
252      * computed, and the harvester will allow to retrieve them.
253      * </p>
254      * <p>
255      * The arguments for initial matrices <em>must</em> be compatible with the {@link org.orekit.orbits.OrbitType
256      * orbit type} and {@link PositionAngleType position angle} that will be used by the propagator.
257      * </p>
258      * <p>
259      * The default implementation throws an exception as the method is not supported by all propagators.
260      * </p>
261      * @param stmName State Transition Matrix state name
262      * @param initialStm initial State Transition Matrix ∂Y/∂Y₀,
263      * if null (which is the most frequent case), assumed to be 6x6 identity
264      * @param initialJacobianColumns initial columns of the Jacobians matrix with respect to parameters,
265      * if null or if some selected parameters are missing from the dictionary, the corresponding
266      * initial column is assumed to be 0
267      * @return harvester to retrieve computed matrices during and after propagation
268      * @since 11.1
269      */
270     default MatricesHarvester setupMatricesComputation(final String stmName, final RealMatrix initialStm,
271                                                        final DoubleArrayDictionary initialJacobianColumns) {
272         throw new UnsupportedOperationException();
273     }
274 
275     /** Propagate towards a target date.
276      * <p>Simple propagators use only the target date as the specification for
277      * computing the propagated state. More feature rich propagators can consider
278      * other information and provide different operating modes or G-stop
279      * facilities to stop at pinpointed events occurrences. In these cases, the
280      * target date is only a hint, not a mandatory objective.</p>
281      * @param target target date towards which orbit state should be propagated
282      * @return propagated state
283      */
284     SpacecraftState propagate(AbsoluteDate target);
285 
286     /** Propagate from a start date towards a target date.
287      * <p>Those propagators use a start date and a target date to
288      * compute the propagated state. For propagators using event detection mechanism,
289      * if the provided start date is different from the initial state date, a first,
290      * simple propagation is performed, without processing any event computation.
291      * Then complete propagation is performed from start date to target date.</p>
292      * @param start start date from which orbit state should be propagated
293      * @param target target date to which orbit state should be propagated
294      * @return propagated state
295      */
296     SpacecraftState propagate(AbsoluteDate start, AbsoluteDate target);
297 
298     /** {@inheritDoc} */
299     @Override
300     default TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate date, final Frame frame) {
301         return propagate(date).getPVCoordinates(frame);
302     }
303 
304     /** {@inheritDoc} */
305     @Override
306     default Vector3D getVelocity(final AbsoluteDate date, final Frame frame) {
307         final SpacecraftState state = propagate(date);
308         final KinematicTransform transform = getFrame().getKinematicTransformTo(frame, date);
309         return transform.transformOnlyPV(state.getPVCoordinates()).getVelocity();
310     }
311 
312     /** {@inheritDoc} */
313     @Override
314     default Vector3D getPosition(final AbsoluteDate date, final Frame frame) {
315         return propagate(date).getPosition(frame);
316     }
317 
318 }