Class FieldNumericalPropagator<T extends org.hipparchus.RealFieldElement<T>>
- java.lang.Object
-
- org.orekit.propagation.FieldAbstractPropagator<T>
-
- org.orekit.propagation.integration.FieldAbstractIntegratedPropagator<T>
-
- org.orekit.propagation.numerical.FieldNumericalPropagator<T>
-
- All Implemented Interfaces:
FieldPropagator<T>
,FieldPVCoordinatesProvider<T>
public class FieldNumericalPropagator<T extends org.hipparchus.RealFieldElement<T>> extends FieldAbstractIntegratedPropagator<T>
This class propagatesorbits
using numerical integration.Numerical propagation is much more accurate than analytical propagation like for example
Keplerian
orEckstein-Hechler
, but requires a few more steps to set up to be used properly. Whereas analytical propagators are configured only thanks to their various constructors and can be used immediately after construction, numerical propagators configuration involve setting several parameters between construction time and propagation time.The configuration parameters that can be set are:
- the initial spacecraft state (
setInitialState(FieldSpacecraftState)
) - the central attraction coefficient (
setMu(double)
) - the various force models (
addForceModel(ForceModel)
,removeForceModels()
) - the
type
of orbital parameters to be used for propagation (setOrbitType(OrbitType)
), - the
type
of position angle to be used in orbital parameters to be used for propagation where it is relevant (setPositionAngleType(PositionAngle)
), - whether
additional equations
should be propagated along with orbital state (FieldAbstractIntegratedPropagator.addAdditionalEquations(org.orekit.propagation.integration.FieldAdditionalEquations)
), - the discrete events that should be triggered during propagation
(
FieldAbstractIntegratedPropagator.addEventDetector(FieldEventDetector)
,FieldAbstractIntegratedPropagator.clearEventsDetectors()
) - the binding logic with the rest of the application (
FieldAbstractIntegratedPropagator.setSlaveMode()
,FieldAbstractPropagator.setMasterMode(RealFieldElement, org.orekit.propagation.sampling.FieldOrekitFixedStepHandler)
,FieldAbstractIntegratedPropagator.setMasterMode(org.orekit.propagation.sampling.FieldOrekitStepHandler)
,FieldAbstractIntegratedPropagator.setEphemerisMode()
,FieldAbstractIntegratedPropagator.getGeneratedEphemeris()
)
From these configuration parameters, only the initial state is mandatory. The default propagation settings are in
equinoctial
parameters withtrue
longitude argument. If the central attraction coefficient is not explicitly specified, the one used to define the initial orbit will be used. However, specifying only the initial state and perhaps the central attraction coefficient would mean the propagator would use only Keplerian forces. In this case, the simplerKeplerianPropagator
class would perhaps be more effective.The underlying numerical integrator set up in the constructor may also have its own configuration parameters. Typical configuration parameters for adaptive stepsize integrators are the min, max and perhaps start step size as well as the absolute and/or relative errors thresholds.
The state that is seen by the integrator is a simple seven elements double array. The six first elements are either:
- the
equinoctial orbit parameters
(a, ex, ey, hx, hy, λM or λE or λv) in meters and radians, - the
Keplerian orbit parameters
(a, e, i, ω, Ω, M or E or v) in meters and radians, - the
circular orbit parameters
(a, ex, ey, i, Ω, αM or αE or αv) in meters and radians, - the
Cartesian orbit parameters
(x, y, z, vx, vy, vz) in meters and meters per seconds.
The following code snippet shows a typical setting for Low Earth Orbit propagation in equinoctial parameters and true longitude argument:
final T zero = field.getZero(); final T dP = zero.add(0.001); final T minStep = zero.add(0.001); final T maxStep = zero.add(500); final T initStep = zero.add(60); final double[][] tolerance = FieldNumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL); AdaptiveStepsizeFieldIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tolerance[0], tolerance[1]); integrator.setInitialStepSize(initStep); propagator = new FieldNumericalPropagator<>(field, integrator);
By default, at the end of the propagation, the propagator resets the initial state to the final state, thus allowing a new propagation to be started from there without recomputing the part already performed. This behaviour can be chenged by calling
FieldAbstractIntegratedPropagator.setResetAtEnd(boolean)
.Beware the same instance cannot be used simultaneously by different threads, the class is not thread-safe.
- Author:
- Mathieu Roméro, Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
FieldSpacecraftState
,ForceModel
,FieldOrekitStepHandler
,FieldOrekitFixedStepHandler
,FieldIntegratedEphemeris
,FieldTimeDerivativesEquations
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.orekit.propagation.integration.FieldAbstractIntegratedPropagator
FieldAbstractIntegratedPropagator.MainStateEquations<T extends org.hipparchus.RealFieldElement<T>>
-
-
Field Summary
-
Fields inherited from interface org.orekit.propagation.FieldPropagator
DEFAULT_LAW, DEFAULT_MASS, EPHEMERIS_GENERATION_MODE, MASTER_MODE, SLAVE_MODE
-
-
Constructor Summary
Constructors Constructor Description FieldNumericalPropagator(org.hipparchus.Field<T> field, org.hipparchus.ode.FieldODEIntegrator<T> integrator)
Create a new instance of NumericalPropagator, based on orbit definition mu.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description void
addForceModel(ForceModel model)
Add a force model to the global perturbation model.protected FieldStateMapper<T>
createMapper(FieldAbsoluteDate<T> referenceDate, double mu, OrbitType orbitType, PositionAngle positionAngleType, AttitudeProvider attitudeProvider, Frame frame)
Create a mapper between raw double components and spacecraft state.List<ForceModel>
getAllForceModels()
Get all the force models, perturbing forces and Newtonian attraction included.List<ForceModel>
getForceModels()
Deprecated.as of 9.1, this method is deprecated, the perturbing force models are retrieved together with the Newtonian attraction by callinggetAllForceModels()
protected FieldAbstractIntegratedPropagator.MainStateEquations<T>
getMainStateEquations(org.hipparchus.ode.FieldODEIntegrator<T> integrator)
Get the differential equations to integrate (for main state only).NewtonianAttraction
getNewtonianAttractionForceModel()
Deprecated.as of 9.1, this method is deprecated, the Newtonian attraction force model (if any) is the last in thegetAllForceModels()
OrbitType
getOrbitType()
Get propagation parameter type.PositionAngle
getPositionAngleType()
Get propagation parameter type.TimeStampedFieldPVCoordinates<T>
getPVCoordinates(FieldAbsoluteDate<T> date, Frame frame)
Get theFieldPVCoordinates
of the body in the selected frame.void
removeForceModels()
Remove all perturbing force models from the global perturbation model.void
resetInitialState(FieldSpacecraftState<T> state)
Reset the propagator initial state.void
setInitialState(FieldSpacecraftState<T> initialState)
Set the initial state.void
setMu(double mu)
Set the central attraction coefficient μ.void
setOrbitType(OrbitType orbitType)
Set propagation orbit type.void
setPositionAngleType(PositionAngle positionAngleType)
Set position angle type.static <T extends org.hipparchus.RealFieldElement<T>>
double[][]tolerances(T dP, FieldOrbit<T> orbit, OrbitType type)
Estimate tolerance vectors for integrators.-
Methods inherited from class org.orekit.propagation.integration.FieldAbstractIntegratedPropagator
addAdditionalEquations, addEventDetector, afterIntegration, beforeIntegration, clearEventsDetectors, getBasicDimension, getCalls, getEventsDetectors, getGeneratedEphemeris, getInitialIntegrationState, getIntegrator, getManagedAdditionalStates, getMu, initMapper, isAdditionalStateManaged, isMeanOrbit, propagate, propagate, propagate, setAttitudeProvider, setEphemerisMode, setMasterMode, setResetAtEnd, setSlaveMode, setUpEventDetector, setUpUserEventDetectors
-
Methods inherited from class org.orekit.propagation.FieldAbstractPropagator
addAdditionalStateProvider, getAdditionalStateProviders, getAttitudeProvider, getField, getFixedStepSize, getFrame, getInitialState, getMode, getStartDate, getStepHandler, setMasterMode, setStartDate, updateAdditionalStates
-
-
-
-
Constructor Detail
-
FieldNumericalPropagator
public FieldNumericalPropagator(org.hipparchus.Field<T> field, org.hipparchus.ode.FieldODEIntegrator<T> integrator)
Create a new instance of NumericalPropagator, based on orbit definition mu. After creation, the instance is empty, i.e. the attitude provider is set to an unspecified default law and there are no perturbing forces at all. This means that ifaddForceModel
is not called after creation, the integrated orbit will follow a Keplerian evolution only. The defaults areOrbitType.EQUINOCTIAL
forpropagation orbit type
andPositionAngle.TRUE
forposition angle type
.- Parameters:
integrator
- numerical integrator to use for propagation.field
- Field used by default
-
-
Method Detail
-
setMu
public void setMu(double mu)
Set the central attraction coefficient μ.- Overrides:
setMu
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
mu
- central attraction coefficient (m³/s²)- See Also:
addForceModel(ForceModel)
-
addForceModel
public void addForceModel(ForceModel model)
Add a force model to the global perturbation model.If this method is not called at all, the integrated orbit will follow a Keplerian evolution only.
- Parameters:
model
- perturbingForceModel
to add- See Also:
removeForceModels()
,setMu(double)
-
removeForceModels
public void removeForceModels()
Remove all perturbing force models from the global perturbation model.Once all perturbing forces have been removed (and as long as no new force model is added), the integrated orbit will follow a Keplerian evolution only.
- See Also:
addForceModel(ForceModel)
-
getAllForceModels
public List<ForceModel> getAllForceModels()
Get all the force models, perturbing forces and Newtonian attraction included.- Returns:
- list of perturbing force models, with Newtonian attraction being the last one
- Since:
- 9.1
- See Also:
addForceModel(ForceModel)
,setMu(double)
-
getForceModels
@Deprecated public List<ForceModel> getForceModels()
Deprecated.as of 9.1, this method is deprecated, the perturbing force models are retrieved together with the Newtonian attraction by callinggetAllForceModels()
Get perturbing force models list.- Returns:
- list of perturbing force models
-
getNewtonianAttractionForceModel
@Deprecated public NewtonianAttraction getNewtonianAttractionForceModel()
Deprecated.as of 9.1, this method is deprecated, the Newtonian attraction force model (if any) is the last in thegetAllForceModels()
Get the Newtonian attraction from the central body force model.- Returns:
- Newtonian attraction force model
-
setOrbitType
public void setOrbitType(OrbitType orbitType)
Set propagation orbit type.- Overrides:
setOrbitType
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
orbitType
- orbit type to use for propagation
-
getOrbitType
public OrbitType getOrbitType()
Get propagation parameter type.- Overrides:
getOrbitType
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- orbit type used for propagation
-
setPositionAngleType
public void setPositionAngleType(PositionAngle positionAngleType)
Set position angle type.The position parameter type is meaningful only if
propagation orbit type
support it. As an example, it is not meaningful for propagation inCartesian
parameters.- Overrides:
setPositionAngleType
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
positionAngleType
- angle type to use for propagation
-
getPositionAngleType
public PositionAngle getPositionAngleType()
Get propagation parameter type.- Overrides:
getPositionAngleType
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Returns:
- angle type to use for propagation
-
setInitialState
public void setInitialState(FieldSpacecraftState<T> initialState)
Set the initial state.- Parameters:
initialState
- initial state
-
resetInitialState
public void resetInitialState(FieldSpacecraftState<T> state)
Reset the propagator initial state.- Specified by:
resetInitialState
in interfaceFieldPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Overrides:
resetInitialState
in classFieldAbstractPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
state
- new initial state to consider
-
getPVCoordinates
public TimeStampedFieldPVCoordinates<T> getPVCoordinates(FieldAbsoluteDate<T> date, Frame frame)
Get theFieldPVCoordinates
of the body in the selected frame.- Specified by:
getPVCoordinates
in interfaceFieldPVCoordinatesProvider<T extends org.hipparchus.RealFieldElement<T>>
- Overrides:
getPVCoordinates
in classFieldAbstractPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
date
- current dateframe
- the frame where to define the position- Returns:
- time-stamped position/velocity of the body (m and m/s)
-
createMapper
protected FieldStateMapper<T> createMapper(FieldAbsoluteDate<T> referenceDate, double mu, OrbitType orbitType, PositionAngle positionAngleType, AttitudeProvider attitudeProvider, Frame frame)
Create a mapper between raw double components and spacecraft state. /** Simple constructor.The position parameter type is meaningful only if
propagation orbit type
support it. As an example, it is not meaningful for propagation inCartesian
parameters.- Specified by:
createMapper
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
referenceDate
- reference datemu
- central attraction coefficient (m³/s²)orbitType
- orbit type to use for mappingpositionAngleType
- angle type to use for propagationattitudeProvider
- attitude providerframe
- inertial frame- Returns:
- new mapper
-
getMainStateEquations
protected FieldAbstractIntegratedPropagator.MainStateEquations<T> getMainStateEquations(org.hipparchus.ode.FieldODEIntegrator<T> integrator)
Get the differential equations to integrate (for main state only).- Specified by:
getMainStateEquations
in classFieldAbstractIntegratedPropagator<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
integrator
- numerical integrator to use for propagation.- Returns:
- differential equations for main state
-
tolerances
public static <T extends org.hipparchus.RealFieldElement<T>> double[][] tolerances(T dP, FieldOrbit<T> orbit, OrbitType type)
Estimate tolerance vectors for integrators.The errors are estimated from partial derivatives properties of orbits, starting from a scalar position error specified by the user. Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)), we get at constant energy (i.e. on a Keplerian trajectory):
V² r |dV| = mu |dr|
So we deduce a scalar velocity error consistent with the position error. From here, we apply orbits Jacobians matrices to get consistent errors on orbital parameters.The tolerances are only orders of magnitude, and integrator tolerances are only local estimates, not global ones. So some care must be taken when using these tolerances. Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error position after several orbits integration.
- Type Parameters:
T
- elements type- Parameters:
dP
- user specified position errororbit
- reference orbittype
- propagation type for the meaning of the tolerance vectors elements (it may be different fromorbit.getType()
)- Returns:
- a two rows array, row 0 being the absolute tolerance error and row 1 being the relative tolerance error
-
-