Class FieldTransform<T extends org.hipparchus.RealFieldElement<T>>
- java.lang.Object
-
- org.orekit.frames.FieldTransform<T>
-
- Type Parameters:
T
- the type of the field elements
- All Implemented Interfaces:
TimeShiftable<FieldTransform<T>>
,TimeStamped
public class FieldTransform<T extends org.hipparchus.RealFieldElement<T>> extends Object implements TimeStamped, TimeShiftable<FieldTransform<T>>
Transformation class in three dimensional space.This class represents the transformation engine between
frames
. It is used both to define the relationship between each frame and its parent frame and to gather all individual transforms into one operation when converting between frames far away from each other.The convention used in OREKIT is vectorial transformation. It means that a transformation is defined as a transform to apply to the coordinates of a vector expressed in the old frame to obtain the same vector expressed in the new frame.
Instances of this class are guaranteed to be immutable.
Examples
Example of translation from RA to RB
We want to transform the
FieldPVCoordinates
PVA to PVB with :PVA = ({1, 0, 0}, {2, 0, 0}, {3, 0, 0});
PVB = ({0, 0, 0}, {0, 0, 0}, {0, 0, 0});The transform to apply then is defined as follows :
Vector3D translation = new Vector3D(-1, 0, 0); Vector3D velocity = new Vector3D(-2, 0, 0); Vector3D acceleration = new Vector3D(-3, 0, 0); Transform R1toR2 = new Transform(date, translation, velocity, acceleration); PVB = R1toR2.transformPVCoordinates
(PVA); Example of rotation from RA to RB
We want to transform the
FieldPVCoordinates
PVA to PVB withPVA = ({1, 0, 0}, { 1, 0, 0});
PVB = ({0, 1, 0}, {-2, 1, 0});The transform to apply then is defined as follows :
Rotation rotation = new Rotation(Vector3D.PLUS_K, FastMath.PI / 2); Vector3D rotationRate = new Vector3D(0, 0, -2); Transform R1toR2 = new Transform(rotation, rotationRate); PVB = R1toR2.transformPVCoordinates
(PVA); - Since:
- 9.0
- Author:
- Luc Maisonobe, Fabien Maussion
-
-
Constructor Summary
Constructors Constructor Description FieldTransform(org.hipparchus.Field<T> field, Transform transform)
Build a transform from a regular transform.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation)
Build a rotation transform.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationRate)
Build a rotation transform.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationRate, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationAcceleration)
Build a rotation transform.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation)
Build a translation transform.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> velocity)
Build a translation transform, with its first time derivative.FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> velocity, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> acceleration)
Build a translation transform, with its first and second time derivatives.FieldTransform(FieldAbsoluteDate<T> date, FieldTransform<T> first, FieldTransform<T> second)
Build a transform by combining two existing ones.FieldTransform(FieldAbsoluteDate<T> date, FieldAngularCoordinates<T> angular)
Build a rotation transform.FieldTransform(FieldAbsoluteDate<T> date, FieldPVCoordinates<T> cartesian)
Build a translation transform, with its first time derivative.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description FieldTransform<T>
freeze()
Get a frozen transform.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
getAcceleration()
Get the second time derivative of the translation.FieldAngularCoordinates<T>
getAngular()
Get the underlying elementary angular part.FieldPVCoordinates<T>
getCartesian()
Get the underlying elementary Cartesian part.AbsoluteDate
getDate()
Get the date.FieldAbsoluteDate<T>
getFieldDate()
Get the date.static <T extends org.hipparchus.RealFieldElement<T>>
FieldTransform<T>getIdentity(org.hipparchus.Field<T> field)
Get the identity transform.FieldTransform<T>
getInverse()
Get the inverse transform of the instance.void
getJacobian(CartesianDerivativesFilter selector, T[][] jacobian)
Compute the Jacobian of thetransformPVCoordinates(FieldPVCoordinates)
method of the transform.org.hipparchus.geometry.euclidean.threed.FieldRotation<T>
getRotation()
Get the underlying elementary rotation.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
getRotationAcceleration()
Get the second time derivative of the rotation.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
getRotationRate()
Get the first time derivative of the rotation.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
getTranslation()
Get the underlying elementary translation.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
getVelocity()
Get the first time derivative of the translation.static <T extends org.hipparchus.RealFieldElement<T>>
FieldTransform<T>interpolate(FieldAbsoluteDate<T> interpolationDate, Collection<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.static <T extends org.hipparchus.RealFieldElement<T>>
FieldTransform<T>interpolate(FieldAbsoluteDate<T> date, CartesianDerivativesFilter cFilter, AngularDerivativesFilter aFilter, Collection<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.static <T extends org.hipparchus.RealFieldElement<T>>
FieldTransform<T>interpolate(FieldAbsoluteDate<T> date, CartesianDerivativesFilter cFilter, AngularDerivativesFilter aFilter, Stream<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.FieldTransform<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldTransform<T>
shiftedBy(T dt)
Get a time-shifted instance.org.hipparchus.geometry.euclidean.threed.FieldLine<T>
transformLine(org.hipparchus.geometry.euclidean.threed.FieldLine<T> line)
Transform a line.org.hipparchus.geometry.euclidean.threed.FieldLine<T>
transformLine(org.hipparchus.geometry.euclidean.threed.Line line)
Transform a line.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
transformPosition(org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position)
Transform a position vector (including translation effects).org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
transformPosition(org.hipparchus.geometry.euclidean.threed.Vector3D position)
Transform a position vector (including translation effects).FieldPVCoordinates<T>
transformPVCoordinates(FieldPVCoordinates<T> pv)
TransformTimeStampedFieldPVCoordinates
including kinematic effects.FieldPVCoordinates<T>
transformPVCoordinates(PVCoordinates pv)
TransformTimeStampedPVCoordinates
including kinematic effects.TimeStampedFieldPVCoordinates<T>
transformPVCoordinates(TimeStampedFieldPVCoordinates<T> pv)
TransformTimeStampedFieldPVCoordinates
including kinematic effects.TimeStampedFieldPVCoordinates<T>
transformPVCoordinates(TimeStampedPVCoordinates pv)
TransformTimeStampedPVCoordinates
including kinematic effects.org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
transformVector(org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> vector)
Transform a vector (ignoring translation effects).org.hipparchus.geometry.euclidean.threed.FieldVector3D<T>
transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D vector)
Transform a vector (ignoring translation effects).
-
-
-
Constructor Detail
-
FieldTransform
public FieldTransform(org.hipparchus.Field<T> field, Transform transform)
Build a transform from a regular transform.- Parameters:
field
- field of the elementstransform
- regular transform to convert
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation)
Build a translation transform.- Parameters:
date
- date of the transformtranslation
- translation to apply (i.e. coordinates of the transformed origin, or coordinates of the origin of the old frame in the new frame)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation)
Build a rotation transform.- Parameters:
date
- date of the transformrotation
- rotation to apply ( i.e. rotation to apply to the coordinates of a vector expressed in the old frame to obtain the same vector expressed in the new frame )
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> velocity)
Build a translation transform, with its first time derivative.- Parameters:
date
- date of the transformtranslation
- translation to apply (i.e. coordinates of the transformed origin, or coordinates of the origin of the old frame in the new frame)velocity
- the velocity of the translation (i.e. origin of the old frame velocity in the new frame)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> translation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> velocity, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> acceleration)
Build a translation transform, with its first and second time derivatives.- Parameters:
date
- date of the transformtranslation
- translation to apply (i.e. coordinates of the transformed origin, or coordinates of the origin of the old frame in the new frame)velocity
- the velocity of the translation (i.e. origin of the old frame velocity in the new frame)acceleration
- the acceleration of the translation (i.e. origin of the old frame acceleration in the new frame)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, FieldPVCoordinates<T> cartesian)
Build a translation transform, with its first time derivative.- Parameters:
date
- date of the transformcartesian
- Cartesian part of the transformation to apply (i.e. coordinates of the transformed origin, or coordinates of the origin of the old frame in the new frame, with their derivatives)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationRate)
Build a rotation transform.- Parameters:
date
- date of the transformrotation
- rotation to apply ( i.e. rotation to apply to the coordinates of a vector expressed in the old frame to obtain the same vector expressed in the new frame )rotationRate
- the axis of the instant rotation expressed in the new frame. (norm representing angular rate)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, org.hipparchus.geometry.euclidean.threed.FieldRotation<T> rotation, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationRate, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> rotationAcceleration)
Build a rotation transform.- Parameters:
date
- date of the transformrotation
- rotation to apply ( i.e. rotation to apply to the coordinates of a vector expressed in the old frame to obtain the same vector expressed in the new frame )rotationRate
- the axis of the instant rotationrotationAcceleration
- the axis of the instant rotation expressed in the new frame. (norm representing angular rate)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, FieldAngularCoordinates<T> angular)
Build a rotation transform.- Parameters:
date
- date of the transformangular
- angular part of the transformation to apply (i.e. rotation to apply to the coordinates of a vector expressed in the old frame to obtain the same vector expressed in the new frame, with its rotation rate)
-
FieldTransform
public FieldTransform(FieldAbsoluteDate<T> date, FieldTransform<T> first, FieldTransform<T> second)
Build a transform by combining two existing ones.Note that the dates of the two existing transformed are ignored, and the combined transform date is set to the date supplied in this constructor without any attempt to shift the raw transforms. This is a design choice allowing user full control of the combination.
- Parameters:
date
- date of the transformfirst
- first transform appliedsecond
- second transform applied
-
-
Method Detail
-
getIdentity
public static <T extends org.hipparchus.RealFieldElement<T>> FieldTransform<T> getIdentity(org.hipparchus.Field<T> field)
Get the identity transform.- Type Parameters:
T
- the type of the field elements- Parameters:
field
- field for the components- Returns:
- identity transform
-
getDate
public AbsoluteDate getDate()
Get the date.- Specified by:
getDate
in interfaceTimeStamped
- Returns:
- date attached to the object
-
getFieldDate
public FieldAbsoluteDate<T> getFieldDate()
Get the date.- Returns:
- date attached to the object
-
shiftedBy
public FieldTransform<T> shiftedBy(double dt)
Get a time-shifted instance.- Specified by:
shiftedBy
in interfaceTimeShiftable<T extends org.hipparchus.RealFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldTransform<T> shiftedBy(T dt)
Get a time-shifted instance.- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
interpolate
public static <T extends org.hipparchus.RealFieldElement<T>> FieldTransform<T> interpolate(FieldAbsoluteDate<T> interpolationDate, Collection<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.Calling this method is equivalent to call
interpolate(FieldAbsoluteDate, CartesianDerivativesFilter, AngularDerivativesFilter, Collection)
withcFilter
set toCartesianDerivativesFilter.USE_PVA
andaFilter
set toAngularDerivativesFilter.USE_RRA
set to true.- Type Parameters:
T
- the type of the field elements- Parameters:
interpolationDate
- interpolation datesample
- sample points on which interpolation should be done- Returns:
- a new instance, interpolated at specified date
-
interpolate
public static <T extends org.hipparchus.RealFieldElement<T>> FieldTransform<T> interpolate(FieldAbsoluteDate<T> date, CartesianDerivativesFilter cFilter, AngularDerivativesFilter aFilter, Collection<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.Note that even if first time derivatives (velocities and rotation rates) from sample can be ignored, the interpolated instance always includes interpolated derivatives. This feature can be used explicitly to compute these derivatives when it would be too complex to compute them from an analytical formula: just compute a few sample points from the explicit formula and set the derivatives to zero in these sample points, then use interpolation to add derivatives consistent with the positions and rotations.
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
- Type Parameters:
T
- the type of the field elements- Parameters:
date
- interpolation datecFilter
- filter for derivatives from the sample to use in interpolationaFilter
- filter for derivatives from the sample to use in interpolationsample
- sample points on which interpolation should be done- Returns:
- a new instance, interpolated at specified date
-
interpolate
public static <T extends org.hipparchus.RealFieldElement<T>> FieldTransform<T> interpolate(FieldAbsoluteDate<T> date, CartesianDerivativesFilter cFilter, AngularDerivativesFilter aFilter, Stream<FieldTransform<T>> sample)
Interpolate a transform from a sample set of existing transforms.Note that even if first time derivatives (velocities and rotation rates) from sample can be ignored, the interpolated instance always includes interpolated derivatives. This feature can be used explicitly to compute these derivatives when it would be too complex to compute them from an analytical formula: just compute a few sample points from the explicit formula and set the derivatives to zero in these sample points, then use interpolation to add derivatives consistent with the positions and rotations.
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
- Type Parameters:
T
- the type of the field elements- Parameters:
date
- interpolation datecFilter
- filter for derivatives from the sample to use in interpolationaFilter
- filter for derivatives from the sample to use in interpolationsample
- sample points on which interpolation should be done- Returns:
- a new instance, interpolated at specified date
-
getInverse
public FieldTransform<T> getInverse()
Get the inverse transform of the instance.- Returns:
- inverse transform of the instance
-
freeze
public FieldTransform<T> freeze()
Get a frozen transform.This method creates a copy of the instance but frozen in time, i.e. with velocity, acceleration and rotation rate forced to zero.
- Returns:
- a new transform, without any time-dependent parts
-
transformPosition
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> transformPosition(org.hipparchus.geometry.euclidean.threed.Vector3D position)
Transform a position vector (including translation effects).- Parameters:
position
- vector to transform- Returns:
- transformed position
-
transformPosition
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> transformPosition(org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> position)
Transform a position vector (including translation effects).- Parameters:
position
- vector to transform- Returns:
- transformed position
-
transformVector
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D vector)
Transform a vector (ignoring translation effects).- Parameters:
vector
- vector to transform- Returns:
- transformed vector
-
transformVector
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> transformVector(org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> vector)
Transform a vector (ignoring translation effects).- Parameters:
vector
- vector to transform- Returns:
- transformed vector
-
transformLine
public org.hipparchus.geometry.euclidean.threed.FieldLine<T> transformLine(org.hipparchus.geometry.euclidean.threed.Line line)
Transform a line.- Parameters:
line
- to transform- Returns:
- transformed line
-
transformLine
public org.hipparchus.geometry.euclidean.threed.FieldLine<T> transformLine(org.hipparchus.geometry.euclidean.threed.FieldLine<T> line)
Transform a line.- Parameters:
line
- to transform- Returns:
- transformed line
-
transformPVCoordinates
public FieldPVCoordinates<T> transformPVCoordinates(PVCoordinates pv)
TransformTimeStampedPVCoordinates
including kinematic effects.In order to allow the user more flexibility, this method does not check for consistency between the transform
date
and the time-stamped position-velocitydate
. The returned value will always have the samedate
as the input argument, regardless of the instancedate
.- Parameters:
pv
- time-stamped position-velocity to transform.- Returns:
- transformed time-stamped position-velocity
-
transformPVCoordinates
public TimeStampedFieldPVCoordinates<T> transformPVCoordinates(TimeStampedPVCoordinates pv)
TransformTimeStampedPVCoordinates
including kinematic effects.In order to allow the user more flexibility, this method does not check for consistency between the transform
date
and the time-stamped position-velocitydate
. The returned value will always have the samedate
as the input argument, regardless of the instancedate
.- Parameters:
pv
- time-stamped position-velocity to transform.- Returns:
- transformed time-stamped position-velocity
-
transformPVCoordinates
public FieldPVCoordinates<T> transformPVCoordinates(FieldPVCoordinates<T> pv)
TransformTimeStampedFieldPVCoordinates
including kinematic effects.BEWARE! This method does explicit computation of velocity and acceleration by combining the transform velocity, acceleration, rotation rate and rotation acceleration with the velocity and acceleration from the argument. This implies that this method should not be used when derivatives are contained in the
field elements
(typically when usingDerivativeStructure
elements where time is one of the differentiation parameter), otherwise the time derivatives would be computed twice, once explicitly in this method and once implicitly in the field operations. If time derivatives are contained in the field elements themselves, then rather than this method thetransformPosition
method should be used, so the derivatives are computed once, as part of the field. This method is rather expected to be used when the field elements areDerivativeStructure
instances where the differentiation parameters are not time (they can typically be initial state for computing state transition matrices or force models parameters, or ground stations positions, ...).In order to allow the user more flexibility, this method does not check for consistency between the transform
date
and the time-stamped position-velocitydate
. The returned value will always have the samedate
as the input argument, regardless of the instancedate
.- Parameters:
pv
- time-stamped position-velocity to transform.- Returns:
- transformed time-stamped position-velocity
-
transformPVCoordinates
public TimeStampedFieldPVCoordinates<T> transformPVCoordinates(TimeStampedFieldPVCoordinates<T> pv)
TransformTimeStampedFieldPVCoordinates
including kinematic effects.BEWARE! This method does explicit computation of velocity and acceleration by combining the transform velocity, acceleration, rotation rate and rotation acceleration with the velocity and acceleration from the argument. This implies that this method should not be used when derivatives are contained in the
field elements
(typically when usingDerivativeStructure
elements where time is one of the differentiation parameter), otherwise the time derivatives would be computed twice, once explicitly in this method and once implicitly in the field operations. If time derivatives are contained in the field elements themselves, then rather than this method thetransformPosition
method should be used, so the derivatives are computed once, as part of the field. This method is rather expected to be used when the field elements areDerivativeStructure
instances where the differentiation parameters are not time (they can typically be initial state for computing state transition matrices or force models parameters, or ground stations positions, ...).In order to allow the user more flexibility, this method does not check for consistency between the transform
date
and the time-stamped position-velocitydate
. The returned value will always have the samedate
as the input argument, regardless of the instancedate
.- Parameters:
pv
- time-stamped position-velocity to transform.- Returns:
- transformed time-stamped position-velocity
-
getJacobian
public void getJacobian(CartesianDerivativesFilter selector, T[][] jacobian)
Compute the Jacobian of thetransformPVCoordinates(FieldPVCoordinates)
method of the transform.Element
jacobian[i][j]
is the derivative of Cartesian coordinate i of the transformedFieldPVCoordinates
with respect to Cartesian coordinate j of the inputFieldPVCoordinates
in methodtransformPVCoordinates(FieldPVCoordinates)
.This definition implies that if we define position-velocity coordinates
PV₁ = transform.transformPVCoordinates
(PV₀), then their differentials dPV₁ and dPV₀ will obey the following relation where J is the matrix computed by this method:
dPV₁ = J × dPV₀
- Parameters:
selector
- selector specifying the size of the upper left corner that must be filled (either 3x3 for positions only, 6x6 for positions and velocities, 9x9 for positions, velocities and accelerations)jacobian
- placeholder matrix whose upper-left corner is to be filled with the Jacobian, the rest of the matrix remaining untouched
-
getCartesian
public FieldPVCoordinates<T> getCartesian()
Get the underlying elementary Cartesian part.A transform can be uniquely represented as an elementary translation followed by an elementary rotation. This method returns this unique elementary translation with its derivative.
- Returns:
- underlying elementary Cartesian part
- See Also:
getTranslation()
,getVelocity()
-
getTranslation
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getTranslation()
Get the underlying elementary translation.A transform can be uniquely represented as an elementary translation followed by an elementary rotation. This method returns this unique elementary translation.
- Returns:
- underlying elementary translation
- See Also:
getCartesian()
,getVelocity()
,getAcceleration()
-
getVelocity
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getVelocity()
Get the first time derivative of the translation.- Returns:
- first time derivative of the translation
- See Also:
getCartesian()
,getTranslation()
,getAcceleration()
-
getAcceleration
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getAcceleration()
Get the second time derivative of the translation.- Returns:
- second time derivative of the translation
- See Also:
getCartesian()
,getTranslation()
,getVelocity()
-
getAngular
public FieldAngularCoordinates<T> getAngular()
Get the underlying elementary angular part.A transform can be uniquely represented as an elementary translation followed by an elementary rotation. This method returns this unique elementary rotation with its derivative.
- Returns:
- underlying elementary angular part
- See Also:
getRotation()
,getRotationRate()
,getRotationAcceleration()
-
getRotation
public org.hipparchus.geometry.euclidean.threed.FieldRotation<T> getRotation()
Get the underlying elementary rotation.A transform can be uniquely represented as an elementary translation followed by an elementary rotation. This method returns this unique elementary rotation.
- Returns:
- underlying elementary rotation
- See Also:
getAngular()
,getRotationRate()
,getRotationAcceleration()
-
getRotationRate
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getRotationRate()
Get the first time derivative of the rotation.The norm represents the angular rate.
- Returns:
- First time derivative of the rotation
- See Also:
getAngular()
,getRotation()
,getRotationAcceleration()
-
getRotationAcceleration
public org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> getRotationAcceleration()
Get the second time derivative of the rotation.- Returns:
- Second time derivative of the rotation
- See Also:
getAngular()
,getRotation()
,getRotationRate()
-
-