1 /* Copyright 2002-2019 CS Systèmes d'Information
2 * Licensed to CS Systèmes d'Information (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.data;
18
19 import java.io.Serializable;
20
21 import org.hipparchus.RealFieldElement;
22 import org.orekit.utils.Constants;
23
24 /**
25 * Polynomial nutation function.
26 *
27 * @author Luc Maisonobe
28 * @see PoissonSeries
29 */
30 public class PolynomialNutation implements Serializable {
31
32 /** Serializable UID. */
33 private static final long serialVersionUID = 20131007L;
34
35 /** Coefficients of the polynomial part. */
36 private double[] coefficients;
37
38 /** Build a polynomial from its coefficients.
39 * @param coefficients polynomial coefficients in increasing degree
40 */
41 public PolynomialNutation(final double... coefficients) {
42 this.coefficients = coefficients.clone();
43 }
44
45 /** Evaluate the value of the polynomial.
46 * @param tc date offset in Julian centuries
47 * @return value of the polynomial
48 */
49 public double value(final double tc) {
50
51 double p = 0;
52 for (int i = coefficients.length - 1; i >= 0; --i) {
53 p = p * tc + coefficients[i];
54 }
55
56 return p;
57
58 }
59
60 /** Evaluate the time derivative of the polynomial.
61 * @param tc date offset in Julian centuries
62 * @return time derivative of the polynomial
63 */
64 public double derivative(final double tc) {
65
66 double p = 0;
67 for (int i = coefficients.length - 1; i > 0; --i) {
68 p = p * tc + i * coefficients[i];
69 }
70
71 return p / Constants.JULIAN_CENTURY;
72
73 }
74
75 /** Evaluate the value of the polynomial.
76 * @param tc date offset in Julian centuries
77 * @param <T> type of the filed elements
78 * @return value of the polynomial
79 */
80 public <T extends RealFieldElement<T>> T value(final T tc) {
81
82 T p = tc.getField().getZero();
83 for (int i = coefficients.length - 1; i >= 0; --i) {
84 p = p.multiply(tc).add(coefficients[i]);
85 }
86
87 return p;
88
89 }
90
91 /** Evaluate the time derivative of the polynomial.
92 * @param tc date offset in Julian centuries
93 * @param <T> type of the filed elements
94 * @return time derivative of the polynomial
95 */
96 public <T extends RealFieldElement<T>> T derivative(final T tc) {
97
98 T p = tc.getField().getZero();
99 for (int i = coefficients.length - 1; i > 0; --i) {
100 p = p.multiply(tc).add( i * coefficients[i]);
101 }
102
103 return p.divide(Constants.JULIAN_CENTURY);
104
105 }
106
107 }