FieldTimeInterpolable<FieldOrbit<T>,T>, FieldTimeShiftable<FieldOrbit<T>,T>, FieldTimeStamped<T>, FieldPVCoordinatesProvider<T>public class FieldKeplerianOrbit<T extends org.hipparchus.RealFieldElement<T>> extends FieldOrbit<T>
The parameters used internally are the classical Keplerian elements:
a
e
i
ω
Ω
v
where ω stands for the Perigee Argument, Ω stands for the
Right Ascension of the Ascending Node and v stands for the true anomaly.
This class supports hyperbolic orbits, using the convention that semi major axis is negative for such orbits (and of course eccentricity is greater than 1).
When orbit is either equatorial or circular, some Keplerian elements
(more precisely ω and Ω) become ambiguous so this class should not
be used for such orbits. For this reason, equinoctial
orbits is the recommended way to represent orbits.
The instance KeplerianOrbit is guaranteed to be immutable.
Orbit,
CircularOrbit,
CartesianOrbit,
EquinoctialOrbit| Constructor | Description |
|---|---|
FieldKeplerianOrbit(FieldOrbit<T> op) |
Constructor from any kind of orbital parameters.
|
FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates,
Frame frame,
FieldAbsoluteDate<T> date,
double mu) |
Constructor from Cartesian parameters.
|
FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates,
Frame frame,
double mu) |
Constructor from Cartesian parameters.
|
FieldKeplerianOrbit(T a,
T e,
T i,
T pa,
T raan,
T anomaly,
PositionAngle type,
Frame frame,
FieldAbsoluteDate<T> date,
double mu) |
Creates a new instance.
|
FieldKeplerianOrbit(T a,
T e,
T i,
T pa,
T raan,
T anomaly,
T aDot,
T eDot,
T iDot,
T paDot,
T raanDot,
T anomalyDot,
PositionAngle type,
Frame frame,
FieldAbsoluteDate<T> date,
double mu) |
Creates a new instance.
|
| Modifier and Type | Method | Description |
|---|---|---|
void |
addKeplerContribution(PositionAngle type,
double gm,
T[] pDot) |
Add the contribution of the Keplerian motion to parameters derivatives
|
protected T[][] |
computeJacobianEccentricWrtCartesian() |
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianMeanWrtCartesian() |
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianTrueWrtCartesian() |
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
ellipticEccentricToMean(T E,
T e) |
Computes the mean anomaly from the elliptic eccentric anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
ellipticEccentricToTrue(T E,
T e) |
Computes the true anomaly from the elliptic eccentric anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
ellipticKeplerianToPosition(T a,
T e,
T i,
T pa,
T raan,
T v,
double mu) |
|
T |
getA() |
Get the semi-major axis.
|
T |
getADot() |
Get the semi-major axis derivative.
|
T |
getAnomaly(PositionAngle type) |
Get the anomaly.
|
T |
getAnomalyDot(PositionAngle type) |
Get the anomaly derivative.
|
T |
getE() |
Get the eccentricity.
|
T |
getEccentricAnomaly() |
Get the eccentric anomaly.
|
T |
getEccentricAnomalyDot() |
Get the eccentric anomaly derivative.
|
T |
getEDot() |
Get the eccentricity derivative.
|
T |
getEquinoctialEx() |
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialExDot() |
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEy() |
Get the second component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEyDot() |
Get the second component of the equinoctial eccentricity vector.
|
T |
getHx() |
Get the first component of the inclination vector.
|
T |
getHxDot() |
Get the first component of the inclination vector derivative.
|
T |
getHy() |
Get the second component of the inclination vector.
|
T |
getHyDot() |
Get the second component of the inclination vector derivative.
|
T |
getI() |
Get the inclination.
|
T |
getIDot() |
Get the inclination derivative.
|
T |
getLE() |
Get the eccentric longitude argument.
|
T |
getLEDot() |
Get the eccentric longitude argument derivative.
|
T |
getLM() |
Get the mean longitude argument.
|
T |
getLMDot() |
Get the mean longitude argument derivative.
|
T |
getLv() |
Get the true longitude argument.
|
T |
getLvDot() |
Get the true longitude argument derivative.
|
T |
getMeanAnomaly() |
Get the mean anomaly.
|
T |
getMeanAnomalyDot() |
Get the mean anomaly derivative.
|
T |
getPerigeeArgument() |
Get the perigee argument.
|
T |
getPerigeeArgumentDot() |
Get the perigee argument derivative.
|
T |
getRightAscensionOfAscendingNode() |
Get the right ascension of the ascending node.
|
T |
getRightAscensionOfAscendingNodeDot() |
Get the right ascension of the ascending node derivative.
|
T |
getTrueAnomaly() |
Get the true anomaly.
|
T |
getTrueAnomalyDot() |
Get the true anomaly derivative.
|
OrbitType |
getType() |
Get the orbit type.
|
boolean |
hasDerivatives() |
Check if orbit includes derivatives.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
hyperbolicEccentricToMean(T H,
T e) |
Computes the mean anomaly from the hyperbolic eccentric anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
hyperbolicEccentricToTrue(T H,
T e) |
Computes the true anomaly from the hyperbolic eccentric anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
hyperbolicKeplerianToPosition(T a,
T e,
T i,
T pa,
T raan,
T v,
double mu) |
|
protected TimeStampedFieldPVCoordinates<T> |
initPVCoordinates() |
Compute the position/velocity coordinates from the canonical parameters.
|
FieldKeplerianOrbit<T> |
interpolate(FieldAbsoluteDate<T> date,
Stream<FieldOrbit<T>> sample) |
Get an interpolated instance.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
meanToEllipticEccentric(T M,
T e) |
Computes the elliptic eccentric anomaly from the mean anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
meanToHyperbolicEccentric(T M,
T e) |
Computes the hyperbolic eccentric anomaly from the mean anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
normalizeAngle(T a,
T center) |
Normalize an angle in a 2π wide interval around a center value.
|
FieldKeplerianOrbit<T> |
shiftedBy(double dt) |
Get a time-shifted instance.
|
FieldKeplerianOrbit<T> |
shiftedBy(T dt) |
Get a time-shifted orbit.
|
KeplerianOrbit |
toOrbit() |
Transforms the FieldOrbit instance into an Orbit instance.
|
String |
toString() |
Returns a string representation of this Keplerian parameters object.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
trueToEllipticEccentric(T v,
T e) |
Computes the elliptic eccentric anomaly from the true anomaly.
|
static <T extends org.hipparchus.RealFieldElement<T>> |
trueToHyperbolicEccentric(T v,
T e) |
Computes the hyperbolic eccentric anomaly from the true anomaly.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, hasNonKeplerianAccelerationinterpolatepublic FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
a - semi-major axis (m), negative for hyperbolic orbitse - eccentricityi - inclination (rad)pa - perigee argument (ω, rad)raan - right ascension of ascending node (Ω, rad)anomaly - mean, eccentric or true anomaly (rad)type - type of anomalyframe - the frame in which the parameters are defined
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial frame or a and e don't match for hyperbolic orbits,
or v is out of range for hyperbolic orbitspublic FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngle type, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
a - semi-major axis (m), negative for hyperbolic orbitse - eccentricityi - inclination (rad)pa - perigee argument (ω, rad)raan - right ascension of ascending node (Ω, rad)anomaly - mean, eccentric or true anomaly (rad)aDot - semi-major axis derivative, null if unknown (m/s)eDot - eccentricity derivative, null if unknowniDot - inclination derivative, null if unknown (rad/s)paDot - perigee argument derivative, null if unknown (rad/s)raanDot - right ascension of ascending node derivative, null if unknown (rad/s)anomalyDot - mean, eccentric or true anomaly derivative, null if unknown (rad/s)type - type of anomalyframe - the frame in which the parameters are defined
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial frame or a and e don't match for hyperbolic orbits,
or v is out of range for hyperbolic orbitspublic FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, double mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates is accessible using
FieldOrbit.getPVCoordinates() and FieldOrbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(RealFieldElement) and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame).
pvCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame)mu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates is accessible using
FieldOrbit.getPVCoordinates() and FieldOrbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(RealFieldElement) and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame).
FieldPVCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic FieldKeplerianOrbit(FieldOrbit<T> op)
op - orbital parameters to copypublic OrbitType getType()
getType in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
getA in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getADot()
Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
getADot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getE()
getE in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getEDot()
If the orbit was created without derivatives, the value returned is null.
getEDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getI()
If the orbit was created without derivatives, the value returned is null.
getI in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getIDot()
getIDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getPerigeeArgument()
public T getPerigeeArgumentDot()
If the orbit was created without derivatives, the value returned is null.
public T getRightAscensionOfAscendingNode()
public T getRightAscensionOfAscendingNodeDot()
If the orbit was created without derivatives, the value returned is null.
public T getTrueAnomaly()
public T getTrueAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getEccentricAnomaly()
public T getEccentricAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getMeanAnomaly()
public T getMeanAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getAnomaly(PositionAngle type)
type - type of the anglepublic T getAnomalyDot(PositionAngle type)
If the orbit was created without derivatives, the value returned is null.
type - type of the anglepublic boolean hasDerivatives()
hasDerivatives in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>FieldOrbit.getADot(),
FieldOrbit.getEquinoctialExDot(),
FieldOrbit.getEquinoctialEyDot(),
FieldOrbit.getHxDot(),
FieldOrbit.getHyDot(),
FieldOrbit.getLEDot(),
FieldOrbit.getLvDot(),
FieldOrbit.getLMDot(),
FieldOrbit.getEDot(),
FieldOrbit.getIDot()public static <T extends org.hipparchus.RealFieldElement<T>> T ellipticEccentricToTrue(T E,
T e)
T - type of the field elementsE - eccentric anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T trueToEllipticEccentric(T v,
T e)
T - type of the field elementsv - true anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T hyperbolicEccentricToTrue(T H,
T e)
T - type of the field elementsH - hyperbolic eccentric anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T trueToHyperbolicEccentric(T v,
T e)
T - type of the field elementsv - true anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T hyperbolicEccentricToMean(T H,
T e)
T - type of the field elementsH - hyperbolic eccentric anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T meanToEllipticEccentric(T M,
T e)
The algorithm used here for solving Kepler equation has been published in: "Procedures for solving Kepler's Equation", A. W. Odell and R. H. Gooding, Celestial Mechanics 38 (1986) 307-334
T - type of the field elementsM - mean anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T meanToHyperbolicEccentric(T M,
T e)
The algorithm used here for solving hyperbolic Kepler equation is Danby's iterative method (3rd order) with Vallado's initial guess.
T - Type of the field elementsM - mean anomaly (rad)e - eccentricitypublic static <T extends org.hipparchus.RealFieldElement<T>> T ellipticEccentricToMean(T E,
T e)
T - type of the field elementsE - eccentric anomaly (rad)e - eccentricity@Deprecated public static <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> ellipticKeplerianToPosition(T a, T e, T i, T pa, T raan, T v, double mu)
FieldKeplerianOrbit(RealFieldElement, RealFieldElement,
RealFieldElement, RealFieldElement, RealFieldElement, RealFieldElement, PositionAngle, Frame,
FieldAbsoluteDate, double) and FieldOrbit.getPVCoordinates()T - type of the fiels elementsa - semi-major axis (m)e - eccentricityi - inclination (rad)pa - Perigee Argument (rad)raan - Right Ascension of Ascending Node (rad)v - true anomaly (rad)mu - central attraction coefficient (m³/s²)@Deprecated public static <T extends org.hipparchus.RealFieldElement<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> hyperbolicKeplerianToPosition(T a, T e, T i, T pa, T raan, T v, double mu)
FieldKeplerianOrbit(RealFieldElement, RealFieldElement,
RealFieldElement, RealFieldElement, RealFieldElement, RealFieldElement, PositionAngle, Frame,
FieldAbsoluteDate, double) and FieldOrbit.getPVCoordinates()T - type of the fiels elementsa - semi-major axis (m)e - eccentricityi - inclination (rad)pa - Perigee Argument (rad)raan - Right Ascension of Ascending Node (rad)v - true anomaly (rad)mu - central attraction coefficient (m³/s²)public T getEquinoctialEx()
getEquinoctialEx in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getEquinoctialExDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialExDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getEquinoctialEy()
getEquinoctialEy in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getEquinoctialEyDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialEyDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getHx()
getHx in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getHxDot()
If the orbit was created without derivatives, the value returned is null.
getHxDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getHy()
getHy in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getHyDot()
getHyDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLv()
getLv in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLvDot()
If the orbit was created without derivatives, the value returned is null.
getLvDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLE()
getLE in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLEDot()
If the orbit was created without derivatives, the value returned is null.
getLEDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLM()
getLM in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public T getLMDot()
If the orbit was created without derivatives, the value returned is null.
getLMDot in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
initPVCoordinates in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>public FieldKeplerianOrbit<T> shiftedBy(double dt)
dt - time shift in secondspublic FieldKeplerianOrbit<T> shiftedBy(T dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy in interface FieldTimeShiftable<FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>,T extends org.hipparchus.RealFieldElement<T>>shiftedBy in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>dt - time shift in secondspublic FieldKeplerianOrbit<T> interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
The interpolated instance is created by polynomial Hermite interpolation on Keplerian elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
If orbit interpolation on large samples is needed, using the Ephemeris class is a better way than using this
low-level interpolation. The Ephemeris class automatically handles selection of
a neighboring sub-sample with a predefined number of point from a large global sample
in a thread-safe way.
date - interpolation datesample - sample points on which interpolation should be doneprotected T[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>FieldOrbit.computeJacobianEccentricWrtCartesian(),
FieldOrbit.computeJacobianTrueWrtCartesian()protected T[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>FieldOrbit.computeJacobianMeanWrtCartesian(),
FieldOrbit.computeJacobianTrueWrtCartesian()protected T[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>FieldOrbit.computeJacobianMeanWrtCartesian(),
FieldOrbit.computeJacobianEccentricWrtCartesian()public void addKeplerContribution(PositionAngle type, double gm, T[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>type - type of the position angle in the stategm - attraction coefficient to usepDot - array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)public String toString()
public static <T extends org.hipparchus.RealFieldElement<T>> T normalizeAngle(T a,
T center)
This method has three main uses:
a = MathUtils.normalizeAngle(a, FastMath.PI);a = MathUtils.normalizeAngle(a, 0.0);angle = MathUtils.normalizeAngle(end, start) - start;Note that due to numerical accuracy and since π cannot be represented exactly, the result interval is closed, it cannot be half-closed as would be more satisfactory in a purely mathematical view.
T - the type of the field elementsa - angle to normalizecenter - center of the desired 2π interval for the resultpublic KeplerianOrbit toOrbit()
FieldOrbittoOrbit in class FieldOrbit<T extends org.hipparchus.RealFieldElement<T>>Copyright © 2002-2019 CS Systèmes d'information. All rights reserved.