FieldTimeInterpolable<FieldOrbit<T>,T>
, FieldTimeShiftable<FieldOrbit<T>,T>
, FieldTimeStamped<T>
, FieldPVCoordinatesProvider<T>
public class FieldCartesianOrbit<T extends RealFieldElement<T>> extends FieldOrbit<T>
The parameters used internally are the Cartesian coordinates:
PVCoordinates
.
Note that the implementation of this class delegates all non-Cartesian related
computations (getA()
, getEquinoctialEx()
, ...) to an underlying
instance of the EquinoctialOrbit
class. This implies that using this class
only for analytical computations which are always based on non-Cartesian
parameters is perfectly possible but somewhat sub-optimal.
The instance CartesianOrbit
is guaranteed to be immutable.
Orbit
,
KeplerianOrbit
,
CircularOrbit
,
EquinoctialOrbit
Constructor | Description |
---|---|
FieldCartesianOrbit(FieldOrbit<T> op) |
Constructor from any kind of orbital parameters.
|
FieldCartesianOrbit(FieldPVCoordinates<T> pvaCoordinates,
Frame frame,
FieldAbsoluteDate<T> date,
double mu) |
Constructor from Cartesian parameters.
|
FieldCartesianOrbit(TimeStampedFieldPVCoordinates<T> pvaCoordinates,
Frame frame,
double mu) |
Constructor from Cartesian parameters.
|
Modifier and Type | Method | Description |
---|---|---|
void |
addKeplerContribution(PositionAngle type,
double gm,
T[] pDot) |
Add the contribution of the Keplerian motion to parameters derivatives
|
protected T[][] |
computeJacobianEccentricWrtCartesian() |
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianMeanWrtCartesian() |
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianTrueWrtCartesian() |
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
T |
getA() |
Get the semi-major axis.
|
T |
getADot() |
Get the semi-major axis derivative.
|
T |
getE() |
Get the eccentricity.
|
T |
getEDot() |
Get the eccentricity derivative.
|
T |
getEquinoctialEx() |
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialExDot() |
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEy() |
Get the second component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEyDot() |
Get the second component of the equinoctial eccentricity vector.
|
T |
getHx() |
Get the first component of the inclination vector.
|
T |
getHxDot() |
Get the first component of the inclination vector derivative.
|
T |
getHy() |
Get the second component of the inclination vector.
|
T |
getHyDot() |
Get the second component of the inclination vector derivative.
|
T |
getI() |
Get the inclination.
|
T |
getIDot() |
Get the inclination derivative.
|
T |
getLE() |
Get the eccentric longitude argument.
|
T |
getLEDot() |
Get the eccentric longitude argument derivative.
|
T |
getLM() |
Get the mean longitude argument.
|
T |
getLMDot() |
Get the mean longitude argument derivative.
|
T |
getLv() |
Get the true longitude argument.
|
T |
getLvDot() |
Get the true longitude argument derivative.
|
OrbitType |
getType() |
Get the orbit type.
|
boolean |
hasDerivatives() |
Check if orbit includes derivatives.
|
protected TimeStampedFieldPVCoordinates<T> |
initPVCoordinates() |
Compute the position/velocity coordinates from the canonical parameters.
|
FieldCartesianOrbit<T> |
interpolate(FieldAbsoluteDate<T> date,
Stream<FieldOrbit<T>> sample) |
Get an interpolated instance.
|
FieldCartesianOrbit<T> |
shiftedBy(double dt) |
Get a time-shifted instance.
|
FieldCartesianOrbit<T> |
shiftedBy(T dt) |
Get a time-shifted orbit.
|
CartesianOrbit |
toOrbit() |
Transforms the FieldOrbit instance into an Orbit instance.
|
String |
toString() |
Returns a string representation of this Orbit object.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, hasNonKeplerianAcceleration
interpolate
public FieldCartesianOrbit(TimeStampedFieldPVCoordinates<T> pvaCoordinates, Frame frame, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates
is accessible using
FieldOrbit.getPVCoordinates()
and FieldOrbit.getPVCoordinates(Frame)
. All other methods
use mu
and the position to compute the acceleration, including
shiftedBy(RealFieldElement)
and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.
pvaCoordinates
- the position, velocity and acceleration of the satellite.frame
- the frame in which the PVCoordinates
are defined
(must be a pseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if frame is not a pseudo-inertial frame
public FieldCartesianOrbit(FieldPVCoordinates<T> pvaCoordinates, Frame frame, FieldAbsoluteDate<T> date, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates
is accessible using
FieldOrbit.getPVCoordinates()
and FieldOrbit.getPVCoordinates(Frame)
. All other methods
use mu
and the position to compute the acceleration, including
shiftedBy(RealFieldElement)
and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.
pvaCoordinates
- the position and velocity of the satellite.frame
- the frame in which the PVCoordinates
are defined
(must be a pseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if frame is not a pseudo-inertial frame
public FieldCartesianOrbit(FieldOrbit<T> op)
op
- orbital parameters to copypublic OrbitType getType()
getType
in class FieldOrbit<T extends RealFieldElement<T>>
public T getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
getA
in class FieldOrbit<T extends RealFieldElement<T>>
public T getADot()
Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
getADot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getE()
getE
in class FieldOrbit<T extends RealFieldElement<T>>
public T getEDot()
If the orbit was created without derivatives, the value returned is null.
getEDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getI()
If the orbit was created without derivatives, the value returned is null.
getI
in class FieldOrbit<T extends RealFieldElement<T>>
public T getIDot()
getIDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getEquinoctialEx()
getEquinoctialEx
in class FieldOrbit<T extends RealFieldElement<T>>
public T getEquinoctialExDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialExDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getEquinoctialEy()
getEquinoctialEy
in class FieldOrbit<T extends RealFieldElement<T>>
public T getEquinoctialEyDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialEyDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getHx()
getHx
in class FieldOrbit<T extends RealFieldElement<T>>
public T getHxDot()
If the orbit was created without derivatives, the value returned is null.
getHxDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getHy()
getHy
in class FieldOrbit<T extends RealFieldElement<T>>
public T getHyDot()
getHyDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLv()
getLv
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLvDot()
If the orbit was created without derivatives, the value returned is null.
getLvDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLE()
getLE
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLEDot()
If the orbit was created without derivatives, the value returned is null.
getLEDot
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLM()
getLM
in class FieldOrbit<T extends RealFieldElement<T>>
public T getLMDot()
If the orbit was created without derivatives, the value returned is null.
getLMDot
in class FieldOrbit<T extends RealFieldElement<T>>
public boolean hasDerivatives()
hasDerivatives
in class FieldOrbit<T extends RealFieldElement<T>>
FieldOrbit.getADot()
,
FieldOrbit.getEquinoctialExDot()
,
FieldOrbit.getEquinoctialEyDot()
,
FieldOrbit.getHxDot()
,
FieldOrbit.getHyDot()
,
FieldOrbit.getLEDot()
,
FieldOrbit.getLvDot()
,
FieldOrbit.getLMDot()
,
FieldOrbit.getEDot()
,
FieldOrbit.getIDot()
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
initPVCoordinates
in class FieldOrbit<T extends RealFieldElement<T>>
public FieldCartesianOrbit<T> shiftedBy(double dt)
dt
- time shift in secondspublic FieldCartesianOrbit<T> shiftedBy(T dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy
in interface FieldTimeShiftable<FieldOrbit<T extends RealFieldElement<T>>,T extends RealFieldElement<T>>
shiftedBy
in class FieldOrbit<T extends RealFieldElement<T>>
dt
- time shift in secondspublic FieldCartesianOrbit<T> interpolate(FieldAbsoluteDate<T> date, Stream<FieldOrbit<T>> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
The interpolated instance is created by polynomial Hermite interpolation ensuring velocity remains the exact derivative of position.
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
If orbit interpolation on large samples is needed, using the Ephemeris
class is a better way than using this
low-level interpolation. The Ephemeris class automatically handles selection of
a neighboring sub-sample with a predefined number of point from a large global sample
in a thread-safe way.
date
- interpolation datesample
- sample points on which interpolation should be doneprotected T[][] computeJacobianMeanWrtCartesian()
FieldOrbit
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian
in class FieldOrbit<T extends RealFieldElement<T>>
FieldOrbit.computeJacobianEccentricWrtCartesian()
,
FieldOrbit.computeJacobianTrueWrtCartesian()
protected T[][] computeJacobianEccentricWrtCartesian()
FieldOrbit
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian
in class FieldOrbit<T extends RealFieldElement<T>>
FieldOrbit.computeJacobianMeanWrtCartesian()
,
FieldOrbit.computeJacobianTrueWrtCartesian()
protected T[][] computeJacobianTrueWrtCartesian()
FieldOrbit
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian
in class FieldOrbit<T extends RealFieldElement<T>>
FieldOrbit.computeJacobianMeanWrtCartesian()
,
FieldOrbit.computeJacobianEccentricWrtCartesian()
public void addKeplerContribution(PositionAngle type, double gm, T[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution
in class FieldOrbit<T extends RealFieldElement<T>>
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)public String toString()
public CartesianOrbit toOrbit()
FieldOrbit
toOrbit
in class FieldOrbit<T extends RealFieldElement<T>>
Copyright © 2002-2018 CS Systèmes d'information. All rights reserved.