1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import java.io.Serializable;
20  
21  import org.hipparchus.analysis.differentiation.DerivativeStructure;
22  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
23  import org.hipparchus.geometry.euclidean.threed.Vector3D;
24  import org.orekit.errors.OrekitException;
25  import org.orekit.errors.OrekitMessages;
26  import org.orekit.time.TimeShiftable;
27  
28  /** Simple container for Position/Velocity/Acceleration triplets.
29   * <p>
30   * The state can be slightly shifted to close dates. This shift is based on
31   * a simple quadratic model. It is <em>not</em> intended as a replacement for
32   * proper orbit propagation (it is not even Keplerian!) but should be sufficient
33   * for either small time shifts or coarse accuracy.
34   * </p>
35   * <p>
36   * This class is the angular counterpart to {@link AngularCoordinates}.
37   * </p>
38   * <p>Instances of this class are guaranteed to be immutable.</p>
39   * @author Fabien Maussion
40   * @author Luc Maisonobe
41   */
42  public class PVCoordinates implements TimeShiftable<PVCoordinates>, Serializable {
43  
44      /** Fixed position/velocity at origin (both p, v and a are zero vectors). */
45      public static final PVCoordinates ZERO = new PVCoordinates(Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO);
46  
47      /** Serializable UID. */
48      private static final long serialVersionUID = 20140407L;
49  
50      /** The position. */
51      private final Vector3D position;
52  
53      /** The velocity. */
54      private final Vector3D velocity;
55  
56      /** The acceleration. */
57      private final Vector3D acceleration;
58  
59      /** Simple constructor.
60       * <p> Set the Coordinates to default : (0 0 0), (0 0 0), (0 0 0).</p>
61       */
62      public PVCoordinates() {
63          position     = Vector3D.ZERO;
64          velocity     = Vector3D.ZERO;
65          acceleration = Vector3D.ZERO;
66      }
67  
68      /** Builds a PVCoordinates triplet with zero acceleration.
69       * <p>Acceleration is set to zero</p>
70       * @param position the position vector (m)
71       * @param velocity the velocity vector (m/s)
72       */
73      public PVCoordinates(final Vector3D position, final Vector3D velocity) {
74          this.position     = position;
75          this.velocity     = velocity;
76          this.acceleration = Vector3D.ZERO;
77      }
78  
79      /** Builds a PVCoordinates triplet.
80       * @param position the position vector (m)
81       * @param velocity the velocity vector (m/s)
82       * @param acceleration the acceleration vector (m/s²)
83       */
84      public PVCoordinates(final Vector3D position, final Vector3D velocity, final Vector3D acceleration) {
85          this.position     = position;
86          this.velocity     = velocity;
87          this.acceleration = acceleration;
88      }
89  
90      /** Multiplicative constructor.
91       * <p>Build a PVCoordinates from another one and a scale factor.</p>
92       * <p>The PVCoordinates built will be a * pv</p>
93       * @param a scale factor
94       * @param pv base (unscaled) PVCoordinates
95       */
96      public PVCoordinates(final double a, final PVCoordinates pv) {
97          position     = new Vector3D(a, pv.position);
98          velocity     = new Vector3D(a, pv.velocity);
99          acceleration = new Vector3D(a, pv.acceleration);
100     }
101 
102     /** Subtractive constructor.
103      * <p>Build a relative PVCoordinates from a start and an end position.</p>
104      * <p>The PVCoordinates built will be end - start.</p>
105      * @param start Starting PVCoordinates
106      * @param end ending PVCoordinates
107      */
108     public PVCoordinates(final PVCoordinates start, final PVCoordinates end) {
109         this.position     = end.position.subtract(start.position);
110         this.velocity     = end.velocity.subtract(start.velocity);
111         this.acceleration = end.acceleration.subtract(start.acceleration);
112     }
113 
114     /** Linear constructor.
115      * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
116      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
117      * @param a1 first scale factor
118      * @param pv1 first base (unscaled) PVCoordinates
119      * @param a2 second scale factor
120      * @param pv2 second base (unscaled) PVCoordinates
121      */
122     public PVCoordinates(final double a1, final PVCoordinates pv1,
123                          final double a2, final PVCoordinates pv2) {
124         position     = new Vector3D(a1, pv1.position,     a2, pv2.position);
125         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity);
126         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration);
127     }
128 
129     /** Linear constructor.
130      * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
131      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
132      * @param a1 first scale factor
133      * @param pv1 first base (unscaled) PVCoordinates
134      * @param a2 second scale factor
135      * @param pv2 second base (unscaled) PVCoordinates
136      * @param a3 third scale factor
137      * @param pv3 third base (unscaled) PVCoordinates
138      */
139     public PVCoordinates(final double a1, final PVCoordinates pv1,
140                          final double a2, final PVCoordinates pv2,
141                          final double a3, final PVCoordinates pv3) {
142         position     = new Vector3D(a1, pv1.position,     a2, pv2.position,     a3, pv3.position);
143         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity,     a3, pv3.velocity);
144         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
145     }
146 
147     /** Linear constructor.
148      * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
149      * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
150      * @param a1 first scale factor
151      * @param pv1 first base (unscaled) PVCoordinates
152      * @param a2 second scale factor
153      * @param pv2 second base (unscaled) PVCoordinates
154      * @param a3 third scale factor
155      * @param pv3 third base (unscaled) PVCoordinates
156      * @param a4 fourth scale factor
157      * @param pv4 fourth base (unscaled) PVCoordinates
158      */
159     public PVCoordinates(final double a1, final PVCoordinates pv1,
160                          final double a2, final PVCoordinates pv2,
161                          final double a3, final PVCoordinates pv3,
162                          final double a4, final PVCoordinates pv4) {
163         position     = new Vector3D(a1, pv1.position,     a2, pv2.position,
164                                     a3, pv3.position,     a4, pv4.position);
165         velocity     = new Vector3D(a1, pv1.velocity,     a2, pv2.velocity,
166                                     a3, pv3.velocity,     a4, pv4.velocity);
167         acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration,
168                                     a3, pv3.acceleration, a4, pv4.acceleration);
169     }
170 
171     /** Builds a PVCoordinates triplet from  a {@link FieldVector3D}&lt;{@link DerivativeStructure}&gt;.
172      * <p>
173      * The vector components must have time as their only derivation parameter and
174      * have consistent derivation orders.
175      * </p>
176      * @param p vector with time-derivatives embedded within the coordinates
177      */
178     public PVCoordinates(final FieldVector3D<DerivativeStructure> p) {
179         position = new Vector3D(p.getX().getReal(), p.getY().getReal(), p.getZ().getReal());
180         if (p.getX().getOrder() >= 1) {
181             velocity = new Vector3D(p.getX().getPartialDerivative(1),
182                                     p.getY().getPartialDerivative(1),
183                                     p.getZ().getPartialDerivative(1));
184             if (p.getX().getOrder() >= 2) {
185                 acceleration = new Vector3D(p.getX().getPartialDerivative(2),
186                                             p.getY().getPartialDerivative(2),
187                                             p.getZ().getPartialDerivative(2));
188             } else {
189                 acceleration = Vector3D.ZERO;
190             }
191         } else {
192             velocity     = Vector3D.ZERO;
193             acceleration = Vector3D.ZERO;
194         }
195     }
196 
197     /** Transform the instance to a {@link FieldVector3D}&lt;{@link DerivativeStructure}&gt;.
198      * <p>
199      * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
200      * to the user-specified order.
201      * </p>
202      * @param order derivation order for the vector components (must be either 0, 1 or 2)
203      * @return vector with time-derivatives embedded within the coordinates
204      * @exception OrekitException if the user specified order is too large
205      */
206     public FieldVector3D<DerivativeStructure> toDerivativeStructureVector(final int order)
207         throws OrekitException {
208 
209         final DerivativeStructure x;
210         final DerivativeStructure y;
211         final DerivativeStructure z;
212         switch(order) {
213             case 0 :
214                 x = new DerivativeStructure(1, 0, position.getX());
215                 y = new DerivativeStructure(1, 0, position.getY());
216                 z = new DerivativeStructure(1, 0, position.getZ());
217                 break;
218             case 1 :
219                 x = new DerivativeStructure(1, 1, position.getX(), velocity.getX());
220                 y = new DerivativeStructure(1, 1, position.getY(), velocity.getY());
221                 z = new DerivativeStructure(1, 1, position.getZ(), velocity.getZ());
222                 break;
223             case 2 :
224                 x = new DerivativeStructure(1, 2, position.getX(), velocity.getX(), acceleration.getX());
225                 y = new DerivativeStructure(1, 2, position.getY(), velocity.getY(), acceleration.getY());
226                 z = new DerivativeStructure(1, 2, position.getZ(), velocity.getZ(), acceleration.getZ());
227                 break;
228             default :
229                 throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
230         }
231 
232         return new FieldVector3D<DerivativeStructure>(x, y, z);
233 
234     }
235 
236     /** Estimate velocity between two positions.
237      * <p>Estimation is based on a simple fixed velocity translation
238      * during the time interval between the two positions.</p>
239      * @param start start position
240      * @param end end position
241      * @param dt time elapsed between the dates of the two positions
242      * @return velocity allowing to go from start to end positions
243      */
244     public static Vector3D estimateVelocity(final Vector3D start, final Vector3D end, final double dt) {
245         final double scale = 1.0 / dt;
246         return new Vector3D(scale, end, -scale, start);
247     }
248 
249     /** Get a time-shifted state.
250      * <p>
251      * The state can be slightly shifted to close dates. This shift is based on
252      * a simple Taylor expansion. It is <em>not</em> intended as a replacement for
253      * proper orbit propagation (it is not even Keplerian!) but should be sufficient
254      * for either small time shifts or coarse accuracy.
255      * </p>
256      * @param dt time shift in seconds
257      * @return a new state, shifted with respect to the instance (which is immutable)
258      */
259     public PVCoordinates shiftedBy(final double dt) {
260         return new PVCoordinates(new Vector3D(1, position, dt, velocity, 0.5 * dt * dt, acceleration),
261                                  new Vector3D(1, velocity, dt, acceleration),
262                                  acceleration);
263     }
264 
265     /** Gets the position.
266      * @return the position vector (m).
267      */
268     public Vector3D getPosition() {
269         return position;
270     }
271 
272     /** Gets the velocity.
273      * @return the velocity vector (m/s).
274      */
275     public Vector3D getVelocity() {
276         return velocity;
277     }
278 
279     /** Gets the acceleration.
280      * @return the acceleration vector (m/s²).
281      */
282     public Vector3D getAcceleration() {
283         return acceleration;
284     }
285 
286     /** Gets the momentum.
287      * <p>This vector is the p &otimes; v where p is position, v is velocity
288      * and &otimes; is cross product. To get the real physical angular momentum
289      * you need to multiply this vector by the mass.</p>
290      * <p>The returned vector is recomputed each time this method is called, it
291      * is not cached.</p>
292      * @return a new instance of the momentum vector (m²/s).
293      */
294     public Vector3D getMomentum() {
295         return Vector3D.crossProduct(position, velocity);
296     }
297 
298     /**
299      * Get the angular velocity (spin) of this point as seen from the origin.
300      *
301      * <p> The angular velocity vector is parallel to the {@link #getMomentum()
302      * angular momentum} and is computed by ω = p &times; v / ||p||²
303      *
304      * @return the angular velocity vector
305      * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
306      *      Wikipedia</a>
307      */
308     public Vector3D getAngularVelocity() {
309         return this.getMomentum().scalarMultiply(1.0 / this.getPosition().getNormSq());
310     }
311 
312     /** Get the opposite of the instance.
313      * @return a new position-velocity which is opposite to the instance
314      */
315     public PVCoordinates negate() {
316         return new PVCoordinates(position.negate(), velocity.negate(), acceleration.negate());
317     }
318 
319     /** Normalize the position part of the instance.
320      * <p>
321      * The computed coordinates first component (position) will be a
322      * normalized vector, the second component (velocity) will be the
323      * derivative of the first component (hence it will generally not
324      * be normalized), and the third component (acceleration) will be the
325      * derivative of the second component (hence it will generally not
326      * be normalized).
327      * </p>
328      * @return a new instance, with first component normalized and
329      * remaining component computed to have consistent derivatives
330      */
331     public PVCoordinates normalize() {
332         final double   inv     = 1.0 / position.getNorm();
333         final Vector3D u       = new Vector3D(inv, position);
334         final Vector3D v       = new Vector3D(inv, velocity);
335         final Vector3D w       = new Vector3D(inv, acceleration);
336         final double   uv      = Vector3D.dotProduct(u, v);
337         final double   v2      = Vector3D.dotProduct(v, v);
338         final double   uw      = Vector3D.dotProduct(u, w);
339         final Vector3D uDot    = new Vector3D(1, v, -uv, u);
340         final Vector3D uDotDot = new Vector3D(1, w, -2 * uv, v, 3 * uv * uv - v2 - uw, u);
341         return new PVCoordinates(u, uDot, uDotDot);
342     }
343 
344     /** Compute the cross-product of two instances.
345      * @param pv1 first instances
346      * @param pv2 second instances
347      * @return the cross product v1 ^ v2 as a new instance
348      */
349     public static PVCoordinates crossProduct(final PVCoordinates pv1, final PVCoordinates pv2) {
350         final Vector3D p1 = pv1.position;
351         final Vector3D v1 = pv1.velocity;
352         final Vector3D a1 = pv1.acceleration;
353         final Vector3D p2 = pv2.position;
354         final Vector3D v2 = pv2.velocity;
355         final Vector3D a2 = pv2.acceleration;
356         return new PVCoordinates(Vector3D.crossProduct(p1, p2),
357                                  new Vector3D(1, Vector3D.crossProduct(p1, v2),
358                                               1, Vector3D.crossProduct(v1, p2)),
359                                  new Vector3D(1, Vector3D.crossProduct(p1, a2),
360                                               2, Vector3D.crossProduct(v1, v2),
361                                               1, Vector3D.crossProduct(a1, p2)));
362     }
363 
364     /** Return a string representation of this position/velocity pair.
365      * @return string representation of this position/velocity pair
366      */
367     public String toString() {
368         final String comma = ", ";
369         return new StringBuffer().append('{').append("P(").
370                 append(position.getX()).append(comma).
371                 append(position.getY()).append(comma).
372                 append(position.getZ()).append("), V(").
373                 append(velocity.getX()).append(comma).
374                 append(velocity.getY()).append(comma).
375                 append(velocity.getZ()).append("), A(").
376                 append(acceleration.getX()).append(comma).
377                 append(acceleration.getY()).append(comma).
378                 append(acceleration.getZ()).append(")}").toString();
379     }
380 
381     /** Replace the instance with a data transfer object for serialization.
382      * @return data transfer object that will be serialized
383      */
384     private Object writeReplace() {
385         return new DTO(this);
386     }
387 
388     /** Internal class used only for serialization. */
389     private static class DTO implements Serializable {
390 
391         /** Serializable UID. */
392         private static final long serialVersionUID = 20140723L;
393 
394         /** Double values. */
395         private double[] d;
396 
397         /** Simple constructor.
398          * @param pv instance to serialize
399          */
400         private DTO(final PVCoordinates pv) {
401             this.d = new double[] {
402                 pv.getPosition().getX(),     pv.getPosition().getY(),     pv.getPosition().getZ(),
403                 pv.getVelocity().getX(),     pv.getVelocity().getY(),     pv.getVelocity().getZ(),
404                 pv.getAcceleration().getX(), pv.getAcceleration().getY(), pv.getAcceleration().getZ(),
405             };
406         }
407 
408         /** Replace the deserialized data transfer object with a {@link PVCoordinates}.
409          * @return replacement {@link PVCoordinates}
410          */
411         private Object readResolve() {
412             return new PVCoordinates(new Vector3D(d[0], d[1], d[2]),
413                                      new Vector3D(d[3], d[4], d[5]),
414                                      new Vector3D(d[6], d[7], d[8]));
415         }
416 
417     }
418 
419 }