1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import java.util.Collection;
20  
21  import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
22  import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator;
23  import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
24  import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
25  import org.apache.commons.math3.geometry.euclidean.threed.RotationConvention;
26  import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
27  import org.apache.commons.math3.util.FastMath;
28  import org.apache.commons.math3.util.MathArrays;
29  import org.orekit.errors.OrekitException;
30  import org.orekit.errors.OrekitInternalError;
31  import org.orekit.errors.OrekitMessages;
32  import org.orekit.time.AbsoluteDate;
33  import org.orekit.time.TimeStamped;
34  
35  /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}.
36   * <p>Instances of this class are guaranteed to be immutable.</p>
37   * @author Luc Maisonobe
38   * @since 7.0
39   */
40  public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped {
41  
42      /** Serializable UID. */
43      private static final long serialVersionUID = 20140723L;
44  
45      /** The date. */
46      private final AbsoluteDate date;
47  
48      /** Builds a rotation/rotation rate pair.
49       * @param date coordinates date
50       * @param rotation rotation
51       * @param rotationRate rotation rate Ω (rad/s)
52       * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
53       */
54      public TimeStampedAngularCoordinates(final AbsoluteDate date,
55                                           final Rotation rotation,
56                                           final Vector3D rotationRate,
57                                           final Vector3D rotationAcceleration) {
58          super(rotation, rotationRate, rotationAcceleration);
59          this.date = date;
60      }
61  
62      /** Build the rotation that transforms a pair of pv coordinates into another pair.
63  
64       * <p><em>WARNING</em>! This method requires much more stringent assumptions on
65       * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D,
66       * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class.
67       * As far as the Rotation constructor is concerned, the {@code v₂} vector from
68       * the second pair can be slightly misaligned. The Rotation constructor will
69       * compensate for this misalignment and create a rotation that ensure {@code
70       * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
71       * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
72       * preserved, this constructor works <em>only</em> if the two pairs are fully
73       * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
74       * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
75       * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
76  
77       * @param date coordinates date
78       * @param u1 first vector of the origin pair
79       * @param u2 second vector of the origin pair
80       * @param v1 desired image of u1 by the rotation
81       * @param v2 desired image of u2 by the rotation
82       * @param tolerance relative tolerance factor used to check singularities
83       * @exception OrekitException if the vectors components cannot be converted to
84       * {@link DerivativeStructure} with proper order
85       */
86      public TimeStampedAngularCoordinates(final AbsoluteDate date,
87                                           final PVCoordinates u1, final PVCoordinates u2,
88                                           final PVCoordinates v1, final PVCoordinates v2,
89                                           final double tolerance)
90          throws OrekitException {
91          super(u1, u2, v1, v2, tolerance);
92          this.date = date;
93      }
94  
95      /** Build one of the rotations that transform one pv coordinates into another one.
96  
97       * <p>Except for a possible scale factor, if the instance were
98       * applied to the vector u it will produce the vector v. There is an
99       * infinite number of such rotations, this constructor choose the
100      * one with the smallest associated angle (i.e. the one whose axis
101      * is orthogonal to the (u, v) plane). If u and v are collinear, an
102      * arbitrary rotation axis is chosen.</p>
103 
104      * @param date coordinates date
105      * @param u origin vector
106      * @param v desired image of u by the rotation
107      * @exception OrekitException if the vectors components cannot be converted to
108      * {@link DerivativeStructure} with proper order
109      */
110     public TimeStampedAngularCoordinates(final AbsoluteDate date,
111                                          final PVCoordinates u, final PVCoordinates v)
112         throws OrekitException {
113         super(u, v);
114         this.date = date;
115     }
116 
117     /** Builds a TimeStampedAngularCoordinates from  a {@link FieldRotation}&lt;{@link DerivativeStructure}&gt;.
118      * <p>
119      * The rotation components must have time as their only derivation parameter and
120      * have consistent derivation orders.
121      * </p>
122      * @param date coordinates date
123      * @param r rotation with time-derivatives embedded within the coordinates
124      */
125     public TimeStampedAngularCoordinates(final AbsoluteDate date,
126                                          final FieldRotation<DerivativeStructure> r) {
127         super(r);
128         this.date = date;
129     }
130 
131     /** {@inheritDoc} */
132     public AbsoluteDate getDate() {
133         return date;
134     }
135 
136     /** Revert a rotation/rotation rate pair.
137      * Build a pair which reverse the effect of another pair.
138      * @return a new pair whose effect is the reverse of the effect
139      * of the instance
140      */
141     public TimeStampedAngularCoordinates revert() {
142         return new TimeStampedAngularCoordinates(date,
143                                                  getRotation().revert(),
144                                                  getRotation().applyInverseTo(getRotationRate().negate()),
145                                                  getRotation().applyInverseTo(getRotationAcceleration().negate()));
146     }
147 
148     /** Get a time-shifted state.
149      * <p>
150      * The state can be slightly shifted to close dates. This shift is based on
151      * a simple linear model. It is <em>not</em> intended as a replacement for
152      * proper attitude propagation but should be sufficient for either small
153      * time shifts or coarse accuracy.
154      * </p>
155      * @param dt time shift in seconds
156      * @return a new state, shifted with respect to the instance (which is immutable)
157      */
158     public TimeStampedAngularCoordinates shiftedBy(final double dt) {
159         final AngularCoordinates sac = super.shiftedBy(dt);
160         return new TimeStampedAngularCoordinates(date.shiftedBy(dt),
161                                                  sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
162 
163     }
164 
165     /** Add an offset from the instance.
166      * <p>
167      * We consider here that the offset rotation is applied first and the
168      * instance is applied afterward. Note that angular coordinates do <em>not</em>
169      * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
170      * b.addOffset(a)} lead to <em>different</em> results in most cases.
171      * </p>
172      * <p>
173      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
174      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
175      * so that round trip applications are possible. This means that both {@code
176      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
177      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
178      * </p>
179      * @param offset offset to subtract
180      * @return new instance, with offset subtracted
181      * @see #subtractOffset(AngularCoordinates)
182      */
183     @Override
184     public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) {
185         final Vector3D rOmega    = getRotation().applyTo(offset.getRotationRate());
186         final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
187         return new TimeStampedAngularCoordinates(date,
188                                                  getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR),
189                                                  getRotationRate().add(rOmega),
190                                                  new Vector3D( 1.0, getRotationAcceleration(),
191                                                                1.0, rOmegaDot,
192                                                               -1.0, Vector3D.crossProduct(getRotationRate(), rOmega)));
193     }
194 
195     /** Subtract an offset from the instance.
196      * <p>
197      * We consider here that the offset rotation is applied first and the
198      * instance is applied afterward. Note that angular coordinates do <em>not</em>
199      * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
200      * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
201      * </p>
202      * <p>
203      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
204      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
205      * so that round trip applications are possible. This means that both {@code
206      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
207      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
208      * </p>
209      * @param offset offset to subtract
210      * @return new instance, with offset subtracted
211      * @see #addOffset(AngularCoordinates)
212      */
213     @Override
214     public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) {
215         return addOffset(offset.revert());
216     }
217 
218     /** Interpolate angular coordinates.
219      * <p>
220      * The interpolated instance is created by polynomial Hermite interpolation
221      * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation.
222      * </p>
223      * <p>
224      * This method is based on Sergei Tanygin's paper <a
225      * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude
226      * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues
227      * vector as described in Malcolm D. Shuster's paper <a
228      * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
229      * Survey of Attitude Representations</a>. This change avoids the singularity at π.
230      * There is still a singularity at 2π, which is handled by slightly offsetting all rotations
231      * when this singularity is detected.
232      * </p>
233      * <p>
234      * Note that even if first and second time derivatives (rotation rates and acceleration)
235      * from sample can be ignored, the interpolated instance always includes
236      * interpolated derivatives. This feature can be used explicitly to
237      * compute these derivatives when it would be too complex to compute them
238      * from an analytical formula: just compute a few sample points from the
239      * explicit formula and set the derivatives to zero in these sample points,
240      * then use interpolation to add derivatives consistent with the rotations.
241      * </p>
242      * @param date interpolation date
243      * @param filter filter for derivatives from the sample to use in interpolation
244      * @param sample sample points on which interpolation should be done
245      * @return a new position-velocity, interpolated at specified date
246      * @exception OrekitException if the number of point is too small for interpolating
247      */
248     public static TimeStampedAngularCoordinates interpolate(final AbsoluteDate date,
249                                                             final AngularDerivativesFilter filter,
250                                                             final Collection<TimeStampedAngularCoordinates> sample)
251         throws OrekitException {
252 
253         // set up safety elements for 2π singularity avoidance
254         final double epsilon   = 2 * FastMath.PI / sample.size();
255         final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
256 
257         // set up a linear model canceling mean rotation rate
258         final Vector3D meanRate;
259         if (filter != AngularDerivativesFilter.USE_R) {
260             Vector3D sum = Vector3D.ZERO;
261             for (final TimeStampedAngularCoordinates datedAC : sample) {
262                 sum = sum.add(datedAC.getRotationRate());
263             }
264             meanRate = new Vector3D(1.0 / sample.size(), sum);
265         } else {
266             if (sample.size() < 2) {
267                 throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION,
268                                           sample.size());
269             }
270             Vector3D sum = Vector3D.ZERO;
271             TimeStampedAngularCoordinates previous = null;
272             for (final TimeStampedAngularCoordinates datedAC : sample) {
273                 if (previous != null) {
274                     sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(),
275                                                datedAC.date.durationFrom(previous.date)));
276                 }
277                 previous = datedAC;
278             }
279             meanRate = new Vector3D(1.0 / (sample.size() - 1), sum);
280         }
281         TimeStampedAngularCoordinates offset =
282             new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO);
283 
284         boolean restart = true;
285         for (int i = 0; restart && i < sample.size() + 2; ++i) {
286 
287             // offset adaptation parameters
288             restart = false;
289 
290             // set up an interpolator taking derivatives into account
291             final HermiteInterpolator interpolator = new HermiteInterpolator();
292 
293             // add sample points
294             double sign = +1.0;
295             Rotation previous = Rotation.IDENTITY;
296 
297             for (final TimeStampedAngularCoordinates ac : sample) {
298 
299                 // remove linear offset from the current coordinates
300                 final double dt = ac.date.durationFrom(date);
301                 final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt));
302 
303                 // make sure all interpolated points will be on the same branch
304                 final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(),
305                                                                 fixed.getRotation().getQ1(), previous.getQ1(),
306                                                                 fixed.getRotation().getQ2(), previous.getQ2(),
307                                                                 fixed.getRotation().getQ3(), previous.getQ3());
308                 sign = FastMath.copySign(1.0, dot * sign);
309                 previous = fixed.getRotation();
310 
311                 // check modified Rodrigues vector singularity
312                 if (fixed.getRotation().getQ0() * sign < threshold) {
313                     // the sample point is close to a modified Rodrigues vector singularity
314                     // we need to change the linear offset model to avoid this
315                     restart = true;
316                     break;
317                 }
318 
319                 final double[][] rodrigues = fixed.getModifiedRodrigues(sign);
320                 switch (filter) {
321                     case USE_RRA:
322                         // populate sample with rotation, rotation rate and acceleration data
323                         interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]);
324                         break;
325                     case USE_RR:
326                         // populate sample with rotation and rotation rate data
327                         interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]);
328                         break;
329                     case USE_R:
330                         // populate sample with rotation data only
331                         interpolator.addSamplePoint(dt, rodrigues[0]);
332                         break;
333                     default :
334                         // this should never happen
335                         throw new OrekitInternalError(null);
336                 }
337             }
338 
339             if (restart) {
340                 // interpolation failed, some intermediate rotation was too close to 2π
341                 // we need to offset all rotations to avoid the singularity
342                 offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I,
343                                                                               epsilon,
344                                                                               RotationConvention.VECTOR_OPERATOR),
345                                                                  Vector3D.ZERO, Vector3D.ZERO));
346             } else {
347                 // interpolation succeeded with the current offset
348                 final DerivativeStructure zero = new DerivativeStructure(1, 2, 0, 0.0);
349                 final DerivativeStructure[] p = interpolator.value(zero);
350                 final AngularCoordinates ac = createFromModifiedRodrigues(new double[][] {
351                     {
352                         p[0].getValue(),              p[1].getValue(),              p[2].getValue()
353                     }, {
354                         p[0].getPartialDerivative(1), p[1].getPartialDerivative(1), p[2].getPartialDerivative(1)
355                     }, {
356                         p[0].getPartialDerivative(2), p[1].getPartialDerivative(2), p[2].getPartialDerivative(2)
357                     }
358                 });
359                 return new TimeStampedAngularCoordinates(offset.getDate(),
360                                                          ac.getRotation(),
361                                                          ac.getRotationRate(),
362                                                          ac.getRotationAcceleration()).addOffset(offset);
363             }
364 
365         }
366 
367         // this should never happen
368         throw new OrekitInternalError(null);
369 
370     }
371 
372 }