1 /* Copyright 2002-2015 CS Systèmes d'Information 2 * Licensed to CS Systèmes d'Information (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.utils; 18 19 import java.util.Collection; 20 21 import org.apache.commons.math3.analysis.differentiation.DerivativeStructure; 22 import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator; 23 import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation; 24 import org.apache.commons.math3.geometry.euclidean.threed.Rotation; 25 import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; 26 import org.apache.commons.math3.util.FastMath; 27 import org.apache.commons.math3.util.MathArrays; 28 import org.orekit.errors.OrekitException; 29 import org.orekit.errors.OrekitMessages; 30 import org.orekit.time.AbsoluteDate; 31 import org.orekit.time.TimeStamped; 32 33 /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}. 34 * <p>Instances of this class are guaranteed to be immutable.</p> 35 * @author Luc Maisonobe 36 * @since 7.0 37 */ 38 public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped { 39 40 /** Serializable UID. */ 41 private static final long serialVersionUID = 20140723L; 42 43 /** The date. */ 44 private final AbsoluteDate date; 45 46 /** Builds a rotation/rotation rate pair. 47 * @param date coordinates date 48 * @param rotation rotation 49 * @param rotationRate rotation rate Ω (rad/s) 50 * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) 51 */ 52 public TimeStampedAngularCoordinates(final AbsoluteDate date, 53 final Rotation rotation, 54 final Vector3D rotationRate, 55 final Vector3D rotationAcceleration) { 56 super(rotation, rotationRate, rotationAcceleration); 57 this.date = date; 58 } 59 60 /** Build the rotation that transforms a pair of pv coordinates into another pair. 61 62 * <p><em>WARNING</em>! This method requires much more stringent assumptions on 63 * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D, 64 * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class. 65 * As far as the Rotation constructor is concerned, the {@code v₂} vector from 66 * the second pair can be slightly misaligned. The Rotation constructor will 67 * compensate for this misalignment and create a rotation that ensure {@code 68 * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT 69 * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be 70 * preserved, this constructor works <em>only</em> if the two pairs are fully 71 * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code 72 * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt 73 * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> 74 75 * @param date coordinates date 76 * @param u1 first vector of the origin pair 77 * @param u2 second vector of the origin pair 78 * @param v1 desired image of u1 by the rotation 79 * @param v2 desired image of u2 by the rotation 80 * @param tolerance relative tolerance factor used to check singularities 81 * @exception OrekitException if the vectors components cannot be converted to 82 * {@link DerivativeStructure} with proper order 83 */ 84 public TimeStampedAngularCoordinates(final AbsoluteDate date, 85 final PVCoordinates u1, final PVCoordinates u2, 86 final PVCoordinates v1, final PVCoordinates v2, 87 final double tolerance) 88 throws OrekitException { 89 super(u1, u2, v1, v2, tolerance); 90 this.date = date; 91 } 92 93 /** Build one of the rotations that transform one pv coordinates into another one. 94 95 * <p>Except for a possible scale factor, if the instance were 96 * applied to the vector u it will produce the vector v. There is an 97 * infinite number of such rotations, this constructor choose the 98 * one with the smallest associated angle (i.e. the one whose axis 99 * is orthogonal to the (u, v) plane). If u and v are collinear, an 100 * arbitrary rotation axis is chosen.</p> 101 102 * @param date coordinates date 103 * @param u origin vector 104 * @param v desired image of u by the rotation 105 * @exception OrekitException if the vectors components cannot be converted to 106 * {@link DerivativeStructure} with proper order 107 */ 108 public TimeStampedAngularCoordinates(final AbsoluteDate date, 109 final PVCoordinates u, final PVCoordinates v) 110 throws OrekitException { 111 super(u, v); 112 this.date = date; 113 } 114 115 /** Builds a TimeStampedAngularCoordinates from a {@link FieldRotation}<{@link DerivativeStructure}>. 116 * <p> 117 * The rotation components must have time as their only derivation parameter and 118 * have consistent derivation orders. 119 * </p> 120 * @param date coordinates date 121 * @param r rotation with time-derivatives embedded within the coordinates 122 */ 123 public TimeStampedAngularCoordinates(final AbsoluteDate date, 124 final FieldRotation<DerivativeStructure> r) { 125 super(r); 126 this.date = date; 127 } 128 129 /** {@inheritDoc} */ 130 public AbsoluteDate getDate() { 131 return date; 132 } 133 134 /** Revert a rotation/rotation rate pair. 135 * Build a pair which reverse the effect of another pair. 136 * @return a new pair whose effect is the reverse of the effect 137 * of the instance 138 */ 139 public TimeStampedAngularCoordinates revert() { 140 return new TimeStampedAngularCoordinates(date, 141 getRotation().revert(), 142 getRotation().applyInverseTo(getRotationRate().negate()), 143 getRotation().applyInverseTo(getRotationAcceleration().negate())); 144 } 145 146 /** Get a time-shifted state. 147 * <p> 148 * The state can be slightly shifted to close dates. This shift is based on 149 * a simple linear model. It is <em>not</em> intended as a replacement for 150 * proper attitude propagation but should be sufficient for either small 151 * time shifts or coarse accuracy. 152 * </p> 153 * @param dt time shift in seconds 154 * @return a new state, shifted with respect to the instance (which is immutable) 155 */ 156 public TimeStampedAngularCoordinates shiftedBy(final double dt) { 157 final AngularCoordinates sac = super.shiftedBy(dt); 158 return new TimeStampedAngularCoordinates(date.shiftedBy(dt), 159 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); 160 161 } 162 163 /** Add an offset from the instance. 164 * <p> 165 * We consider here that the offset rotation is applied first and the 166 * instance is applied afterward. Note that angular coordinates do <em>not</em> 167 * commute under this operation, i.e. {@code a.addOffset(b)} and {@code 168 * b.addOffset(a)} lead to <em>different</em> results in most cases. 169 * </p> 170 * <p> 171 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 172 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 173 * so that round trip applications are possible. This means that both {@code 174 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 175 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 176 * </p> 177 * @param offset offset to subtract 178 * @return new instance, with offset subtracted 179 * @see #subtractOffset(AngularCoordinates) 180 */ 181 @Override 182 public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) { 183 final Vector3D rOmega = getRotation().applyTo(offset.getRotationRate()); 184 final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration()); 185 return new TimeStampedAngularCoordinates(date, 186 getRotation().applyTo(offset.getRotation()), 187 getRotationRate().add(rOmega), 188 new Vector3D( 1.0, getRotationAcceleration(), 189 1.0, rOmegaDot, 190 -1.0, Vector3D.crossProduct(getRotationRate(), rOmega))); 191 } 192 193 /** Subtract an offset from the instance. 194 * <p> 195 * We consider here that the offset rotation is applied first and the 196 * instance is applied afterward. Note that angular coordinates do <em>not</em> 197 * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code 198 * b.subtractOffset(a)} lead to <em>different</em> results in most cases. 199 * </p> 200 * <p> 201 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and 202 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed 203 * so that round trip applications are possible. This means that both {@code 204 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code 205 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. 206 * </p> 207 * @param offset offset to subtract 208 * @return new instance, with offset subtracted 209 * @see #addOffset(AngularCoordinates) 210 */ 211 @Override 212 public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) { 213 return addOffset(offset.revert()); 214 } 215 216 /** Interpolate angular coordinates. 217 * <p> 218 * The interpolated instance is created by polynomial Hermite interpolation 219 * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation. 220 * </p> 221 * <p> 222 * This method is based on Sergei Tanygin's paper <a 223 * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude 224 * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues 225 * vector as described in Malcolm D. Shuster's paper <a 226 * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A 227 * Survey of Attitude Representations</a>. This change avoids the singularity at π. 228 * There is still a singularity at 2π, which is handled by slightly offsetting all rotations 229 * when this singularity is detected. 230 * </p> 231 * <p> 232 * Note that even if first and second time derivatives (rotation rates and acceleration) 233 * from sample can be ignored, the interpolated instance always includes 234 * interpolated derivatives. This feature can be used explicitly to 235 * compute these derivatives when it would be too complex to compute them 236 * from an analytical formula: just compute a few sample points from the 237 * explicit formula and set the derivatives to zero in these sample points, 238 * then use interpolation to add derivatives consistent with the rotations. 239 * </p> 240 * @param date interpolation date 241 * @param filter filter for derivatives from the sample to use in interpolation 242 * @param sample sample points on which interpolation should be done 243 * @return a new position-velocity, interpolated at specified date 244 * @exception OrekitException if the number of point is too small for interpolating 245 */ 246 public static TimeStampedAngularCoordinates interpolate(final AbsoluteDate date, 247 final AngularDerivativesFilter filter, 248 final Collection<TimeStampedAngularCoordinates> sample) 249 throws OrekitException { 250 251 // set up safety elements for 2π singularity avoidance 252 final double epsilon = 2 * FastMath.PI / sample.size(); 253 final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4)); 254 255 // set up a linear model canceling mean rotation rate 256 final Vector3D meanRate; 257 if (filter != AngularDerivativesFilter.USE_R) { 258 Vector3D sum = Vector3D.ZERO; 259 for (final TimeStampedAngularCoordinates datedAC : sample) { 260 sum = sum.add(datedAC.getRotationRate()); 261 } 262 meanRate = new Vector3D(1.0 / sample.size(), sum); 263 } else { 264 if (sample.size() < 2) { 265 throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION, 266 sample.size()); 267 } 268 Vector3D sum = Vector3D.ZERO; 269 TimeStampedAngularCoordinates previous = null; 270 for (final TimeStampedAngularCoordinates datedAC : sample) { 271 if (previous != null) { 272 sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(), 273 datedAC.date.durationFrom(previous.date))); 274 } 275 previous = datedAC; 276 } 277 meanRate = new Vector3D(1.0 / (sample.size() - 1), sum); 278 } 279 TimeStampedAngularCoordinates offset = 280 new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO); 281 282 boolean restart = true; 283 for (int i = 0; restart && i < sample.size() + 2; ++i) { 284 285 // offset adaptation parameters 286 restart = false; 287 288 // set up an interpolator taking derivatives into account 289 final HermiteInterpolator interpolator = new HermiteInterpolator(); 290 291 // add sample points 292 double sign = +1.0; 293 Rotation previous = Rotation.IDENTITY; 294 295 for (final TimeStampedAngularCoordinates ac : sample) { 296 297 // remove linear offset from the current coordinates 298 final double dt = ac.date.durationFrom(date); 299 final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt)); 300 301 // make sure all interpolated points will be on the same branch 302 final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(), 303 fixed.getRotation().getQ1(), previous.getQ1(), 304 fixed.getRotation().getQ2(), previous.getQ2(), 305 fixed.getRotation().getQ3(), previous.getQ3()); 306 sign = FastMath.copySign(1.0, dot * sign); 307 previous = fixed.getRotation(); 308 309 // check modified Rodrigues vector singularity 310 if (fixed.getRotation().getQ0() * sign < threshold) { 311 // the sample point is close to a modified Rodrigues vector singularity 312 // we need to change the linear offset model to avoid this 313 restart = true; 314 break; 315 } 316 317 final double[][] rodrigues = fixed.getModifiedRodrigues(sign); 318 switch (filter) { 319 case USE_RRA: 320 // populate sample with rotation, rotation rate and acceleration data 321 interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]); 322 break; 323 case USE_RR: 324 // populate sample with rotation and rotation rate data 325 interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]); 326 break; 327 case USE_R: 328 // populate sample with rotation data only 329 interpolator.addSamplePoint(dt, rodrigues[0]); 330 break; 331 default : 332 // this should never happen 333 throw OrekitException.createInternalError(null); 334 } 335 } 336 337 if (restart) { 338 // interpolation failed, some intermediate rotation was too close to 2π 339 // we need to offset all rotations to avoid the singularity 340 offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I, epsilon), 341 Vector3D.ZERO, Vector3D.ZERO)); 342 } else { 343 // interpolation succeeded with the current offset 344 final DerivativeStructure zero = new DerivativeStructure(1, 2, 0, 0.0); 345 final DerivativeStructure[] p = interpolator.value(zero); 346 final AngularCoordinates ac = createFromModifiedRodrigues(new double[][] { 347 { 348 p[0].getValue(), p[1].getValue(), p[2].getValue() 349 }, { 350 p[0].getPartialDerivative(1), p[1].getPartialDerivative(1), p[2].getPartialDerivative(1) 351 }, { 352 p[0].getPartialDerivative(2), p[1].getPartialDerivative(2), p[2].getPartialDerivative(2) 353 } 354 }); 355 return new TimeStampedAngularCoordinates(offset.getDate(), 356 ac.getRotation(), 357 ac.getRotationRate(), 358 ac.getRotationAcceleration()).addOffset(offset); 359 } 360 361 } 362 363 // this should never happen 364 throw OrekitException.createInternalError(null); 365 366 } 367 368 }