1   /* Copyright 2002-2015 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.utils;
18  
19  import java.util.Collection;
20  
21  import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
22  import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator;
23  import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
24  import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
25  import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
26  import org.apache.commons.math3.util.FastMath;
27  import org.apache.commons.math3.util.MathArrays;
28  import org.orekit.errors.OrekitException;
29  import org.orekit.errors.OrekitMessages;
30  import org.orekit.time.AbsoluteDate;
31  import org.orekit.time.TimeStamped;
32  
33  /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}.
34   * <p>Instances of this class are guaranteed to be immutable.</p>
35   * @author Luc Maisonobe
36   * @since 7.0
37   */
38  public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped {
39  
40      /** Serializable UID. */
41      private static final long serialVersionUID = 20140723L;
42  
43      /** The date. */
44      private final AbsoluteDate date;
45  
46      /** Builds a rotation/rotation rate pair.
47       * @param date coordinates date
48       * @param rotation rotation
49       * @param rotationRate rotation rate Ω (rad/s)
50       * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
51       */
52      public TimeStampedAngularCoordinates(final AbsoluteDate date,
53                                           final Rotation rotation,
54                                           final Vector3D rotationRate,
55                                           final Vector3D rotationAcceleration) {
56          super(rotation, rotationRate, rotationAcceleration);
57          this.date = date;
58      }
59  
60      /** Build the rotation that transforms a pair of pv coordinates into another pair.
61  
62       * <p><em>WARNING</em>! This method requires much more stringent assumptions on
63       * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D,
64       * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class.
65       * As far as the Rotation constructor is concerned, the {@code v₂} vector from
66       * the second pair can be slightly misaligned. The Rotation constructor will
67       * compensate for this misalignment and create a rotation that ensure {@code
68       * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
69       * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
70       * preserved, this constructor works <em>only</em> if the two pairs are fully
71       * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
72       * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
73       * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
74  
75       * @param date coordinates date
76       * @param u1 first vector of the origin pair
77       * @param u2 second vector of the origin pair
78       * @param v1 desired image of u1 by the rotation
79       * @param v2 desired image of u2 by the rotation
80       * @param tolerance relative tolerance factor used to check singularities
81       * @exception OrekitException if the vectors components cannot be converted to
82       * {@link DerivativeStructure} with proper order
83       */
84      public TimeStampedAngularCoordinates(final AbsoluteDate date,
85                                           final PVCoordinates u1, final PVCoordinates u2,
86                                           final PVCoordinates v1, final PVCoordinates v2,
87                                           final double tolerance)
88          throws OrekitException {
89          super(u1, u2, v1, v2, tolerance);
90          this.date = date;
91      }
92  
93      /** Build one of the rotations that transform one pv coordinates into another one.
94  
95       * <p>Except for a possible scale factor, if the instance were
96       * applied to the vector u it will produce the vector v. There is an
97       * infinite number of such rotations, this constructor choose the
98       * one with the smallest associated angle (i.e. the one whose axis
99       * is orthogonal to the (u, v) plane). If u and v are collinear, an
100      * arbitrary rotation axis is chosen.</p>
101 
102      * @param date coordinates date
103      * @param u origin vector
104      * @param v desired image of u by the rotation
105      * @exception OrekitException if the vectors components cannot be converted to
106      * {@link DerivativeStructure} with proper order
107      */
108     public TimeStampedAngularCoordinates(final AbsoluteDate date,
109                                          final PVCoordinates u, final PVCoordinates v)
110         throws OrekitException {
111         super(u, v);
112         this.date = date;
113     }
114 
115     /** Builds a TimeStampedAngularCoordinates from  a {@link FieldRotation}&lt;{@link DerivativeStructure}&gt;.
116      * <p>
117      * The rotation components must have time as their only derivation parameter and
118      * have consistent derivation orders.
119      * </p>
120      * @param date coordinates date
121      * @param r rotation with time-derivatives embedded within the coordinates
122      */
123     public TimeStampedAngularCoordinates(final AbsoluteDate date,
124                                          final FieldRotation<DerivativeStructure> r) {
125         super(r);
126         this.date = date;
127     }
128 
129     /** {@inheritDoc} */
130     public AbsoluteDate getDate() {
131         return date;
132     }
133 
134     /** Revert a rotation/rotation rate pair.
135      * Build a pair which reverse the effect of another pair.
136      * @return a new pair whose effect is the reverse of the effect
137      * of the instance
138      */
139     public TimeStampedAngularCoordinates revert() {
140         return new TimeStampedAngularCoordinates(date,
141                                                  getRotation().revert(),
142                                                  getRotation().applyInverseTo(getRotationRate().negate()),
143                                                  getRotation().applyInverseTo(getRotationAcceleration().negate()));
144     }
145 
146     /** Get a time-shifted state.
147      * <p>
148      * The state can be slightly shifted to close dates. This shift is based on
149      * a simple linear model. It is <em>not</em> intended as a replacement for
150      * proper attitude propagation but should be sufficient for either small
151      * time shifts or coarse accuracy.
152      * </p>
153      * @param dt time shift in seconds
154      * @return a new state, shifted with respect to the instance (which is immutable)
155      */
156     public TimeStampedAngularCoordinates shiftedBy(final double dt) {
157         final AngularCoordinates sac = super.shiftedBy(dt);
158         return new TimeStampedAngularCoordinates(date.shiftedBy(dt),
159                                                  sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
160 
161     }
162 
163     /** Add an offset from the instance.
164      * <p>
165      * We consider here that the offset rotation is applied first and the
166      * instance is applied afterward. Note that angular coordinates do <em>not</em>
167      * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
168      * b.addOffset(a)} lead to <em>different</em> results in most cases.
169      * </p>
170      * <p>
171      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
172      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
173      * so that round trip applications are possible. This means that both {@code
174      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
175      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
176      * </p>
177      * @param offset offset to subtract
178      * @return new instance, with offset subtracted
179      * @see #subtractOffset(AngularCoordinates)
180      */
181     @Override
182     public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) {
183         final Vector3D rOmega    = getRotation().applyTo(offset.getRotationRate());
184         final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
185         return new TimeStampedAngularCoordinates(date,
186                                                  getRotation().applyTo(offset.getRotation()),
187                                                  getRotationRate().add(rOmega),
188                                                  new Vector3D( 1.0, getRotationAcceleration(),
189                                                                1.0, rOmegaDot,
190                                                               -1.0, Vector3D.crossProduct(getRotationRate(), rOmega)));
191     }
192 
193     /** Subtract an offset from the instance.
194      * <p>
195      * We consider here that the offset rotation is applied first and the
196      * instance is applied afterward. Note that angular coordinates do <em>not</em>
197      * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
198      * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
199      * </p>
200      * <p>
201      * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
202      * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
203      * so that round trip applications are possible. This means that both {@code
204      * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
205      * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
206      * </p>
207      * @param offset offset to subtract
208      * @return new instance, with offset subtracted
209      * @see #addOffset(AngularCoordinates)
210      */
211     @Override
212     public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) {
213         return addOffset(offset.revert());
214     }
215 
216     /** Interpolate angular coordinates.
217      * <p>
218      * The interpolated instance is created by polynomial Hermite interpolation
219      * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation.
220      * </p>
221      * <p>
222      * This method is based on Sergei Tanygin's paper <a
223      * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude
224      * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues
225      * vector as described in Malcolm D. Shuster's paper <a
226      * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
227      * Survey of Attitude Representations</a>. This change avoids the singularity at π.
228      * There is still a singularity at 2π, which is handled by slightly offsetting all rotations
229      * when this singularity is detected.
230      * </p>
231      * <p>
232      * Note that even if first and second time derivatives (rotation rates and acceleration)
233      * from sample can be ignored, the interpolated instance always includes
234      * interpolated derivatives. This feature can be used explicitly to
235      * compute these derivatives when it would be too complex to compute them
236      * from an analytical formula: just compute a few sample points from the
237      * explicit formula and set the derivatives to zero in these sample points,
238      * then use interpolation to add derivatives consistent with the rotations.
239      * </p>
240      * @param date interpolation date
241      * @param filter filter for derivatives from the sample to use in interpolation
242      * @param sample sample points on which interpolation should be done
243      * @return a new position-velocity, interpolated at specified date
244      * @exception OrekitException if the number of point is too small for interpolating
245      */
246     public static TimeStampedAngularCoordinates interpolate(final AbsoluteDate date,
247                                                             final AngularDerivativesFilter filter,
248                                                             final Collection<TimeStampedAngularCoordinates> sample)
249         throws OrekitException {
250 
251         // set up safety elements for 2π singularity avoidance
252         final double epsilon   = 2 * FastMath.PI / sample.size();
253         final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
254 
255         // set up a linear model canceling mean rotation rate
256         final Vector3D meanRate;
257         if (filter != AngularDerivativesFilter.USE_R) {
258             Vector3D sum = Vector3D.ZERO;
259             for (final TimeStampedAngularCoordinates datedAC : sample) {
260                 sum = sum.add(datedAC.getRotationRate());
261             }
262             meanRate = new Vector3D(1.0 / sample.size(), sum);
263         } else {
264             if (sample.size() < 2) {
265                 throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION,
266                                           sample.size());
267             }
268             Vector3D sum = Vector3D.ZERO;
269             TimeStampedAngularCoordinates previous = null;
270             for (final TimeStampedAngularCoordinates datedAC : sample) {
271                 if (previous != null) {
272                     sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(),
273                                                datedAC.date.durationFrom(previous.date)));
274                 }
275                 previous = datedAC;
276             }
277             meanRate = new Vector3D(1.0 / (sample.size() - 1), sum);
278         }
279         TimeStampedAngularCoordinates offset =
280             new TimeStampedAngularCoordinates(date, Rotation.IDENTITY, meanRate, Vector3D.ZERO);
281 
282         boolean restart = true;
283         for (int i = 0; restart && i < sample.size() + 2; ++i) {
284 
285             // offset adaptation parameters
286             restart = false;
287 
288             // set up an interpolator taking derivatives into account
289             final HermiteInterpolator interpolator = new HermiteInterpolator();
290 
291             // add sample points
292             double sign = +1.0;
293             Rotation previous = Rotation.IDENTITY;
294 
295             for (final TimeStampedAngularCoordinates ac : sample) {
296 
297                 // remove linear offset from the current coordinates
298                 final double dt = ac.date.durationFrom(date);
299                 final TimeStampedAngularCoordinates fixed = ac.subtractOffset(offset.shiftedBy(dt));
300 
301                 // make sure all interpolated points will be on the same branch
302                 final double dot = MathArrays.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(),
303                                                                 fixed.getRotation().getQ1(), previous.getQ1(),
304                                                                 fixed.getRotation().getQ2(), previous.getQ2(),
305                                                                 fixed.getRotation().getQ3(), previous.getQ3());
306                 sign = FastMath.copySign(1.0, dot * sign);
307                 previous = fixed.getRotation();
308 
309                 // check modified Rodrigues vector singularity
310                 if (fixed.getRotation().getQ0() * sign < threshold) {
311                     // the sample point is close to a modified Rodrigues vector singularity
312                     // we need to change the linear offset model to avoid this
313                     restart = true;
314                     break;
315                 }
316 
317                 final double[][] rodrigues = fixed.getModifiedRodrigues(sign);
318                 switch (filter) {
319                 case USE_RRA:
320                     // populate sample with rotation, rotation rate and acceleration data
321                     interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]);
322                     break;
323                 case USE_RR:
324                     // populate sample with rotation and rotation rate data
325                     interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]);
326                     break;
327                 case USE_R:
328                     // populate sample with rotation data only
329                     interpolator.addSamplePoint(dt, rodrigues[0]);
330                     break;
331                 default :
332                     // this should never happen
333                     throw OrekitException.createInternalError(null);
334                 }
335             }
336 
337             if (restart) {
338                 // interpolation failed, some intermediate rotation was too close to 2π
339                 // we need to offset all rotations to avoid the singularity
340                 offset = offset.addOffset(new AngularCoordinates(new Rotation(Vector3D.PLUS_I, epsilon),
341                                                                  Vector3D.ZERO, Vector3D.ZERO));
342             } else {
343                 // interpolation succeeded with the current offset
344                 final DerivativeStructure zero = new DerivativeStructure(1, 2, 0, 0.0);
345                 final DerivativeStructure[] p = interpolator.value(zero);
346                 final AngularCoordinates ac = createFromModifiedRodrigues(new double[][] {
347                     {
348                         p[0].getValue(),              p[1].getValue(),              p[2].getValue()
349                     }, {
350                         p[0].getPartialDerivative(1), p[1].getPartialDerivative(1), p[2].getPartialDerivative(1)
351                     }, {
352                         p[0].getPartialDerivative(2), p[1].getPartialDerivative(2), p[2].getPartialDerivative(2)
353                     }
354                 });
355                 return new TimeStampedAngularCoordinates(offset.getDate(),
356                                                          ac.getRotation(),
357                                                          ac.getRotationRate(),
358                                                          ac.getRotationAcceleration()).addOffset(offset);
359             }
360 
361         }
362 
363         // this should never happen
364         throw OrekitException.createInternalError(null);
365 
366     }
367 
368 }