1 /* Copyright 2010-2011 Centre National d'Études Spatiales
2 * Licensed to CS Systèmes d'Information (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import java.util.ArrayList;
20 import java.util.Arrays;
21 import java.util.List;
22 import java.util.SortedSet;
23 import java.util.TreeSet;
24
25 import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
26 import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
27 import org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D;
28 import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
29 import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
30 import org.apache.commons.math3.util.FastMath;
31 import org.apache.commons.math3.util.Precision;
32 import org.orekit.errors.OrekitException;
33 import org.orekit.errors.OrekitMessages;
34 import org.orekit.forces.ForceModel;
35 import org.orekit.propagation.SpacecraftState;
36 import org.orekit.propagation.integration.AdditionalEquations;
37
38 /** Set of {@link AdditionalEquations additional equations} computing the partial derivatives
39 * of the state (orbit) with respect to initial state and force models parameters.
40 * <p>
41 * This set of equations are automatically added to a {@link NumericalPropagator numerical propagator}
42 * in order to compute partial derivatives of the orbit along with the orbit itself. This is
43 * useful for example in orbit determination applications.
44 * </p>
45 * @author Véronique Pommier-Maurussane
46 */
47 public class PartialDerivativesEquations implements AdditionalEquations {
48
49 /** Selected parameters for Jacobian computation. */
50 private NumericalPropagator propagator;
51
52 /** Derivatives providers. */
53 private final List<ForceModel> derivativesProviders;
54
55 /** List of parameters selected for Jacobians computation. */
56 private List<ParameterConfiguration> selectedParameters;
57
58 /** Name. */
59 private String name;
60
61 /** State vector dimension without additional parameters
62 * (either 6 or 7 depending on mass derivatives being included or not). */
63 private int stateDim;
64
65 /** Parameters vector dimension. */
66 private int paramDim;
67
68 /** Step used for finite difference computation with respect to spacecraft position. */
69 private double hPos;
70
71 /** Boolean for force models / selected parameters consistency. */
72 private boolean dirty = false;
73
74 /** Jacobian of acceleration with respect to spacecraft position. */
75 private transient double[][] dAccdPos;
76
77 /** Jacobian of acceleration with respect to spacecraft velocity. */
78 private transient double[][] dAccdVel;
79
80 /** Jacobian of acceleration with respect to spacecraft mass. */
81 private transient double[] dAccdM;
82
83 /** Jacobian of acceleration with respect to one force model parameter (array reused for all parameters). */
84 private transient double[] dAccdParam;
85
86 /** Simple constructor.
87 * <p>
88 * Upon construction, this set of equations is <em>automatically</em> added to
89 * the propagator by calling its {@link
90 * NumericalPropagator#addAdditionalEquations(AdditionalEquations)} method. So
91 * there is no need to call this method explicitly for these equations.
92 * </p>
93 * @param name name of the partial derivatives equations
94 * @param propagator the propagator that will handle the orbit propagation
95 * @exception OrekitException if a set of equations with the same name is already present
96 */
97 public PartialDerivativesEquations(final String name, final NumericalPropagator propagator)
98 throws OrekitException {
99 this.name = name;
100 derivativesProviders = new ArrayList<ForceModel>();
101 dirty = true;
102 this.propagator = propagator;
103 selectedParameters = new ArrayList<ParameterConfiguration>();
104 stateDim = -1;
105 paramDim = -1;
106 hPos = Double.NaN;
107 propagator.addAdditionalEquations(this);
108 }
109
110 /** {@inheritDoc} */
111 public String getName() {
112 return name;
113 }
114
115 /** Get the names of the available parameters in the propagator.
116 * <p>
117 * The names returned depend on the force models set up in the propagator,
118 * including the Newtonian attraction from the central body.
119 * </p>
120 * @return available parameters
121 */
122 public List<String> getAvailableParameters() {
123 final List<String> available = new ArrayList<String>();
124 available.addAll(propagator.getNewtonianAttractionForceModel().getParametersNames());
125 for (final ForceModel model : propagator.getForceModels()) {
126 available.addAll(model.getParametersNames());
127 }
128 return available;
129 }
130
131 /** Select the parameters to consider for Jacobian processing.
132 * <p>Parameters names have to be consistent with some
133 * {@link ForceModel} added elsewhere.</p>
134 * @param parameters parameters to consider for Jacobian processing
135 * @see NumericalPropagator#addForceModel(ForceModel)
136 * @see #setInitialJacobians(SpacecraftState, double[][], double[][])
137 * @see ForceModel
138 * @see org.apache.commons.math3.ode.Parameterizable
139
140 */
141 public void selectParameters(final String ... parameters) {
142
143 selectedParameters.clear();
144 for (String param : parameters) {
145 selectedParameters.add(new ParameterConfiguration(param, Double.NaN));
146 }
147
148 dirty = true;
149
150 }
151
152 /** Select the parameters to consider for Jacobian processing.
153 * <p>Parameters names have to be consistent with some
154 * {@link ForceModel} added elsewhere.</p>
155 * @param parameter parameter to consider for Jacobian processing
156 * @param hP step to use for computing Jacobian column with respect to the specified parameter
157 * @see NumericalPropagator#addForceModel(ForceModel)
158 * @see #setInitialJacobians(SpacecraftState, double[][], double[][])
159 * @see ForceModel
160 * @see org.apache.commons.math3.ode.Parameterizable
161 */
162 public void selectParamAndStep(final String parameter, final double hP) {
163 selectedParameters.add(new ParameterConfiguration(parameter, hP));
164 dirty = true;
165 }
166
167 /** Set the initial value of the Jacobian with respect to state and parameter.
168 * <p>
169 * This method is equivalent to call {@link #setInitialJacobians(SpacecraftState,
170 * double[][], double[][])} with dYdY0 set to the identity matrix and dYdP set
171 * to a zero matrix.
172 * </p>
173 * <p>
174 * The returned state must be added to the propagator (it is not done
175 * automatically, as the user may need to add more states to it).
176 * </p>
177 * @param s0 initial state
178 * @param stateDimension state dimension, must be either 6 for orbit only or 7 for orbit and mass
179 * @param paramDimension parameters dimension
180 * @return state with initial Jacobians added
181 * @exception OrekitException if the partial equation has not been registered in
182 * the propagator or if matrices dimensions are incorrect
183 * @see #selectedParameters
184 * @see #selectParamAndStep(String, double)
185 */
186 public SpacecraftState setInitialJacobians(final SpacecraftState s0, final int stateDimension, final int paramDimension)
187 throws OrekitException {
188 final double[][] dYdY0 = new double[stateDimension][stateDimension];
189 final double[][] dYdP = new double[stateDimension][paramDimension];
190 for (int i = 0; i < stateDimension; ++i) {
191 dYdY0[i][i] = 1.0;
192 }
193 return setInitialJacobians(s0, dYdY0, dYdP);
194 }
195
196 /** Set the initial value of the Jacobian with respect to state and parameter.
197 * <p>
198 * The returned state must be added to the propagator (it is not done
199 * automatically, as the user may need to add more states to it).
200 * </p>
201 * @param s1 current state
202 * @param dY1dY0 Jacobian of current state at time t₁ with respect
203 * to state at some previous time t₀ (may be either 6x6 for orbit
204 * only or 7x7 for orbit and mass)
205 * @param dY1dP Jacobian of current state at time t₁ with respect
206 * to parameters (may be null if no parameters are selected)
207 * @return state with initial Jacobians added
208 * @exception OrekitException if the partial equation has not been registered in
209 * the propagator or if matrices dimensions are incorrect
210 * @see #selectedParameters
211 * @see #selectParamAndStep(String, double)
212 */
213 public SpacecraftState setInitialJacobians(final SpacecraftState s1,
214 final double[][] dY1dY0, final double[][] dY1dP)
215 throws OrekitException {
216
217 // Check dimensions
218 stateDim = dY1dY0.length;
219 if ((stateDim < 6) || (stateDim > 7) || (stateDim != dY1dY0[0].length)) {
220 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NEITHER_6X6_NOR_7X7,
221 stateDim, dY1dY0[0].length);
222 }
223 if ((dY1dP != null) && (stateDim != dY1dP.length)) {
224 throw new OrekitException(OrekitMessages.STATE_AND_PARAMETERS_JACOBIANS_ROWS_MISMATCH,
225 stateDim, dY1dP.length);
226 }
227
228 paramDim = (dY1dP == null) ? 0 : dY1dP[0].length;
229
230 // store the matrices as a single dimension array
231 final JacobiansMapper mapper = getMapper();
232 final double[] p = new double[mapper.getAdditionalStateDimension()];
233 mapper.setInitialJacobians(s1, dY1dY0, dY1dP, p);
234
235 // set value in propagator
236 return s1.addAdditionalState(name, p);
237
238 }
239
240 /** Get a mapper between two-dimensional Jacobians and one-dimensional additional state.
241 * @return a mapper between two-dimensional Jacobians and one-dimensional additional state,
242 * with the same name as the instance
243 * @exception OrekitException if the initial Jacobians have not been initialized yet
244 * @see #setInitialJacobians(SpacecraftState, int, int)
245 * @see #setInitialJacobians(SpacecraftState, double[][], double[][])
246 */
247 public JacobiansMapper getMapper() throws OrekitException {
248 if (stateDim < 0) {
249 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_INITIALIZED);
250 }
251 return new JacobiansMapper(name, stateDim, paramDim,
252 propagator.getOrbitType(),
253 propagator.getPositionAngleType());
254 }
255
256 /** {@inheritDoc} */
257 public double[] computeDerivatives(final SpacecraftState s, final double[] pDot)
258 throws OrekitException {
259
260 final int dim = 3;
261
262 // Lazy initialization
263 if (dirty) {
264
265 // if step has not been set by user, set a default value
266 if (Double.isNaN(hPos)) {
267 hPos = FastMath.sqrt(Precision.EPSILON) * s.getPVCoordinates().getPosition().getNorm();
268 }
269
270 // set up derivatives providers
271 derivativesProviders.clear();
272 derivativesProviders.addAll(propagator.getForceModels());
273 derivativesProviders.add(propagator.getNewtonianAttractionForceModel());
274
275 // check all parameters are handled by at least one Jacobian provider
276 for (final ParameterConfiguration param : selectedParameters) {
277 final String parameterName = param.getParameterName();
278 boolean found = false;
279 for (final ForceModel provider : derivativesProviders) {
280 if (provider.isSupported(parameterName)) {
281 param.setProvider(provider);
282 found = true;
283 }
284 }
285 if (!found) {
286
287 // build the list of supported parameters, avoiding duplication
288 final SortedSet<String> set = new TreeSet<String>();
289 for (final ForceModel provider : derivativesProviders) {
290 for (final String forceModelParameter : provider.getParametersNames()) {
291 set.add(forceModelParameter);
292 }
293 }
294 final StringBuilder builder = new StringBuilder();
295 for (final String forceModelParameter : set) {
296 if (builder.length() > 0) {
297 builder.append(", ");
298 }
299 builder.append(forceModelParameter);
300 }
301
302 throw new OrekitException(OrekitMessages.UNSUPPORTED_PARAMETER_NAME,
303 parameterName, builder.toString());
304
305 }
306 }
307
308 // check the numbers of parameters and matrix size agree
309 if (selectedParameters.size() != paramDim) {
310 throw new OrekitException(OrekitMessages.INITIAL_MATRIX_AND_PARAMETERS_NUMBER_MISMATCH,
311 paramDim, selectedParameters.size());
312 }
313
314 dAccdParam = new double[dim];
315 dAccdPos = new double[dim][dim];
316 dAccdVel = new double[dim][dim];
317 dAccdM = (stateDim > 6) ? new double[dim] : null;
318
319 dirty = false;
320
321 }
322
323 // initialize acceleration Jacobians to zero
324 for (final double[] row : dAccdPos) {
325 Arrays.fill(row, 0.0);
326 }
327 for (final double[] row : dAccdVel) {
328 Arrays.fill(row, 0.0);
329 }
330 if (dAccdM != null) {
331 Arrays.fill(dAccdM, 0.0);
332 }
333
334 // prepare derivation variables, 3 for position, 3 for velocity and optionally 1 for mass
335 final int nbVars = (dAccdM == null) ? 6 : 7;
336
337 // position corresponds three free parameters
338 final Vector3D position = s.getPVCoordinates().getPosition();
339 final FieldVector3D<DerivativeStructure> dsP = new FieldVector3D<DerivativeStructure>(new DerivativeStructure(nbVars, 1, 0, position.getX()),
340 new DerivativeStructure(nbVars, 1, 1, position.getY()),
341 new DerivativeStructure(nbVars, 1, 2, position.getZ()));
342
343 // velocity corresponds three free parameters
344 final Vector3D velocity = s.getPVCoordinates().getVelocity();
345 final FieldVector3D<DerivativeStructure> dsV = new FieldVector3D<DerivativeStructure>(new DerivativeStructure(nbVars, 1, 3, velocity.getX()),
346 new DerivativeStructure(nbVars, 1, 4, velocity.getY()),
347 new DerivativeStructure(nbVars, 1, 5, velocity.getZ()));
348
349 // mass corresponds either to a constant or to one free parameter
350 final DerivativeStructure dsM = (dAccdM == null) ?
351 new DerivativeStructure(nbVars, 1, s.getMass()) :
352 new DerivativeStructure(nbVars, 1, 6, s.getMass());
353
354 // TODO: we should compute attitude partial derivatives with respect to position/velocity
355 final Rotation rotation = s.getAttitude().getRotation();
356 final FieldRotation<DerivativeStructure> dsR =
357 new FieldRotation<DerivativeStructure>(new DerivativeStructure(nbVars, 1, rotation.getQ0()),
358 new DerivativeStructure(nbVars, 1, rotation.getQ1()),
359 new DerivativeStructure(nbVars, 1, rotation.getQ2()),
360 new DerivativeStructure(nbVars, 1, rotation.getQ3()),
361 false);
362
363 // compute acceleration Jacobians
364 for (final ForceModel derivativesProvider : derivativesProviders) {
365 final FieldVector3D<DerivativeStructure> acceleration =
366 derivativesProvider.accelerationDerivatives(s.getDate(), s.getFrame(),
367 dsP, dsV, dsR, dsM);
368 addToRow(acceleration.getX(), 0);
369 addToRow(acceleration.getY(), 1);
370 addToRow(acceleration.getZ(), 2);
371 }
372
373 // the variational equations of the complete state Jacobian matrix have the
374 // following form for 7x7, i.e. when mass partial derivatives are also considered
375 // (when mass is not considered, only the A, B, D and E matrices are used along
376 // with their derivatives):
377
378 // [ | | ] [ | | ] [ | | ]
379 // [ Adot | Bdot | Cdot ] [ dVel/dPos = 0 | dVel/dVel = Id | dVel/dm = 0 ] [ A | B | C ]
380 // [ | | ] [ | | ] [ | | ]
381 // --------+--------+--- ---- ------------------+------------------+---------------- -----+-----+-----
382 // [ | | ] [ | | ] [ | | ]
383 // [ Ddot | Edot | Fdot ] = [ dAcc/dPos | dAcc/dVel | dAcc/dm ] * [ D | E | F ]
384 // [ | | ] [ | | ] [ | | ]
385 // --------+--------+--- ---- ------------------+------------------+---------------- -----+-----+-----
386 // [ Gdot | Hdot | Idot ] [ dmDot/dPos = 0 | dmDot/dVel = 0 | dmDot/dm = 0 ] [ G | H | I ]
387
388 // The A, B, D and E sub-matrices and their derivatives (Adot ...) are 3x3 matrices,
389 // the C and F sub-matrices and their derivatives (Cdot ...) are 3x1 matrices,
390 // the G and H sub-matrices and their derivatives (Gdot ...) are 1x3 matrices,
391 // the I sub-matrix and its derivative (Idot) is a 1x1 matrix.
392
393 // The expanded multiplication above can be rewritten to take into account
394 // the fixed values found in the sub-matrices in the left factor. This leads to:
395
396 // [ Adot ] = [ D ]
397 // [ Bdot ] = [ E ]
398 // [ Cdot ] = [ F ]
399 // [ Ddot ] = [ dAcc/dPos ] * [ A ] + [ dAcc/dVel ] * [ D ] + [ dAcc/dm ] * [ G ]
400 // [ Edot ] = [ dAcc/dPos ] * [ B ] + [ dAcc/dVel ] * [ E ] + [ dAcc/dm ] * [ H ]
401 // [ Fdot ] = [ dAcc/dPos ] * [ C ] + [ dAcc/dVel ] * [ F ] + [ dAcc/dm ] * [ I ]
402 // [ Gdot ] = [ 0 ]
403 // [ Hdot ] = [ 0 ]
404 // [ Idot ] = [ 0 ]
405
406 // The following loops compute these expressions taking care of the mapping of the
407 // (A, B, ... I) matrices into the single dimension array p and of the mapping of the
408 // (Adot, Bdot, ... Idot) matrices into the single dimension array pDot.
409
410 // copy D, E and F into Adot, Bdot and Cdot
411 final double[] p = s.getAdditionalState(getName());
412 System.arraycopy(p, dim * stateDim, pDot, 0, dim * stateDim);
413
414 // compute Ddot, Edot and Fdot
415 for (int i = 0; i < dim; ++i) {
416 final double[] dAdPi = dAccdPos[i];
417 final double[] dAdVi = dAccdVel[i];
418 for (int j = 0; j < stateDim; ++j) {
419 pDot[(dim + i) * stateDim + j] =
420 dAdPi[0] * p[j] + dAdPi[1] * p[j + stateDim] + dAdPi[2] * p[j + 2 * stateDim] +
421 dAdVi[0] * p[j + 3 * stateDim] + dAdVi[1] * p[j + 4 * stateDim] + dAdVi[2] * p[j + 5 * stateDim] +
422 ((dAccdM == null) ? 0.0 : dAccdM[i] * p[j + 6 * stateDim]);
423 }
424 }
425
426 if (dAccdM != null) {
427 // set Gdot, Hdot and Idot to 0
428 Arrays.fill(pDot, 6 * stateDim, 7 * stateDim, 0.0);
429 }
430
431 for (int k = 0; k < paramDim; ++k) {
432
433 // compute the acceleration gradient with respect to current parameter
434 final ParameterConfiguration param = selectedParameters.get(k);
435 final ForceModel provider = param.getProvider();
436 final FieldVector3D<DerivativeStructure> accDer =
437 provider.accelerationDerivatives(s, param.getParameterName());
438 dAccdParam[0] = accDer.getX().getPartialDerivative(1);
439 dAccdParam[1] = accDer.getY().getPartialDerivative(1);
440 dAccdParam[2] = accDer.getZ().getPartialDerivative(1);
441
442 // the variational equations of the parameters Jacobian matrix are computed
443 // one column at a time, they have the following form:
444 // [ ] [ | | ] [ ] [ ]
445 // [ Jdot ] [ dVel/dPos = 0 | dVel/dVel = Id | dVel/dm = 0 ] [ J ] [ dVel/dParam = 0 ]
446 // [ ] [ | | ] [ ] [ ]
447 // -------- ------------------+------------------+---------------- ----- --------------------
448 // [ ] [ | | ] [ ] [ ]
449 // [ Kdot ] = [ dAcc/dPos | dAcc/dVel | dAcc/dm ] * [ K ] + [ dAcc/dParam ]
450 // [ ] [ | | ] [ ] [ ]
451 // -------- ------------------+------------------+---------------- ----- --------------------
452 // [ Ldot ] [ dmDot/dPos = 0 | dmDot/dVel = 0 | dmDot/dm = 0 ] [ L ] [ dmDot/dParam = 0 ]
453
454 // The J and K sub-columns and their derivatives (Jdot ...) are 3 elements columns,
455 // the L sub-colums and its derivative (Ldot) are 1 elements columns.
456
457 // The expanded multiplication and addition above can be rewritten to take into
458 // account the fixed values found in the sub-matrices in the left factor. This leads to:
459
460 // [ Jdot ] = [ K ]
461 // [ Kdot ] = [ dAcc/dPos ] * [ J ] + [ dAcc/dVel ] * [ K ] + [ dAcc/dm ] * [ L ] + [ dAcc/dParam ]
462 // [ Ldot ] = [ 0 ]
463
464 // The following loops compute these expressions taking care of the mapping of the
465 // (J, K, L) columns into the single dimension array p and of the mapping of the
466 // (Jdot, Kdot, Ldot) columns into the single dimension array pDot.
467
468 // copy K into Jdot
469 final int columnTop = stateDim * stateDim + k;
470 pDot[columnTop] = p[columnTop + 3 * paramDim];
471 pDot[columnTop + paramDim] = p[columnTop + 4 * paramDim];
472 pDot[columnTop + 2 * paramDim] = p[columnTop + 5 * paramDim];
473
474 // compute Kdot
475 for (int i = 0; i < dim; ++i) {
476 final double[] dAdPi = dAccdPos[i];
477 final double[] dAdVi = dAccdVel[i];
478 pDot[columnTop + (dim + i) * paramDim] =
479 dAccdParam[i] +
480 dAdPi[0] * p[columnTop] + dAdPi[1] * p[columnTop + paramDim] + dAdPi[2] * p[columnTop + 2 * paramDim] +
481 dAdVi[0] * p[columnTop + 3 * paramDim] + dAdVi[1] * p[columnTop + 4 * paramDim] + dAdVi[2] * p[columnTop + 5 * paramDim] +
482 ((dAccdM == null) ? 0.0 : dAccdM[i] * p[columnTop + 6 * paramDim]);
483 }
484
485 if (dAccdM != null) {
486 // set Ldot to 0
487 pDot[columnTop + 6 * paramDim] = 0;
488 }
489
490 }
491
492 // these equations have no effect of the main state itself
493 return null;
494
495 }
496
497 /** Fill Jacobians rows when mass is needed.
498 * @param accelerationComponent component of acceleration (along either x, y or z)
499 * @param index component index (0 for x, 1 for y, 2 for z)
500 */
501 private void addToRow(final DerivativeStructure accelerationComponent, final int index) {
502
503 if (dAccdM == null) {
504
505 // free parameters 0, 1, 2 are for position
506 dAccdPos[index][0] += accelerationComponent.getPartialDerivative(1, 0, 0, 0, 0, 0);
507 dAccdPos[index][1] += accelerationComponent.getPartialDerivative(0, 1, 0, 0, 0, 0);
508 dAccdPos[index][2] += accelerationComponent.getPartialDerivative(0, 0, 1, 0, 0, 0);
509
510 // free parameters 3, 4, 5 are for velocity
511 dAccdVel[index][0] += accelerationComponent.getPartialDerivative(0, 0, 0, 1, 0, 0);
512 dAccdVel[index][1] += accelerationComponent.getPartialDerivative(0, 0, 0, 0, 1, 0);
513 dAccdVel[index][2] += accelerationComponent.getPartialDerivative(0, 0, 0, 0, 0, 1);
514
515 } else {
516
517 // free parameters 0, 1, 2 are for position
518 dAccdPos[index][0] += accelerationComponent.getPartialDerivative(1, 0, 0, 0, 0, 0, 0);
519 dAccdPos[index][1] += accelerationComponent.getPartialDerivative(0, 1, 0, 0, 0, 0, 0);
520 dAccdPos[index][2] += accelerationComponent.getPartialDerivative(0, 0, 1, 0, 0, 0, 0);
521
522 // free parameters 3, 4, 5 are for velocity
523 dAccdVel[index][0] += accelerationComponent.getPartialDerivative(0, 0, 0, 1, 0, 0, 0);
524 dAccdVel[index][1] += accelerationComponent.getPartialDerivative(0, 0, 0, 0, 1, 0, 0);
525 dAccdVel[index][2] += accelerationComponent.getPartialDerivative(0, 0, 0, 0, 0, 1, 0);
526
527 // free parameter 6 is for mass
528 dAccdM[index] += accelerationComponent.getPartialDerivative(0, 0, 0, 0, 0, 0, 1);
529
530 }
531
532 }
533
534 }
535