1   /* Copyright 2002-2015 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.attitudes;
18  
19  import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
20  import org.apache.commons.math3.geometry.euclidean.threed.RotationOrder;
21  import org.orekit.errors.OrekitException;
22  import org.orekit.errors.OrekitMessages;
23  import org.orekit.frames.Frame;
24  import org.orekit.frames.LOFType;
25  import org.orekit.frames.Transform;
26  import org.orekit.time.AbsoluteDate;
27  import org.orekit.utils.PVCoordinates;
28  import org.orekit.utils.PVCoordinatesProvider;
29  
30  
31  /**
32   * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
33   * with respect to a local orbital frame.
34  
35   * <p>
36   * The attitude provider is defined as a rotation offset from some local orbital frame.
37   * @author V&eacute;ronique Pommier-Maurussane
38   */
39  public class LofOffset implements AttitudeProvider {
40  
41      /** Serializable UID. */
42      private static final long serialVersionUID = -713570668596014285L;
43  
44      /** Type of Local Orbital Frame. */
45      private LOFType type;
46  
47      /** Rotation from local orbital frame.  */
48      private final Rotation offset;
49  
50      /** Inertial frame with respect to which orbit should be computed. */
51      private final Frame inertialFrame;
52  
53      /** Create a LOF-aligned attitude.
54       * <p>
55       * Calling this constructor is equivalent to call
56       * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
57       * </p>
58       * @param inertialFrame inertial frame with respect to which orbit should be computed
59       * @param type type of Local Orbital Frame
60       * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
61       */
62      public LofOffset(final Frame inertialFrame, final LOFType type) throws OrekitException {
63          this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
64      }
65  
66      /** Creates new instance.
67       * <p>
68       * An important thing to note is that the rotation order and angles signs used here
69       * are compliant with an <em>attitude</em> definition, i.e. they correspond to
70       * a frame that rotate in a field of fixed vectors. The underlying definitions used
71       * in commons-math {@link org.apache.commons.math3.geometry.euclidean.threed.Rotation#Rotation(RotationOrder,
72       * double, double, double) Rotation(RotationOrder, double, double, double)} use
73       * <em>reversed</em> definition, i.e. they correspond to a vectors field rotating
74       * with respect to a fixed frame. So to retrieve the angles provided here from the
75       * commons-math underlying rotation, one has to <em>revert</em> the rotation, as in
76       * the following code snippet:
77       * </p>
78       * <pre>
79       *   LofOffset law          = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
80       *   Rotation  offsetAtt    = law.getAttitude(orbit).getRotation();
81       *   Rotation  alignedAtt   = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
82       *   Rotation  offsetProper = offsetAtt.applyTo(alignedAtt.revert());
83       *
84       *   // note the call to revert in the following statement
85       *   double[] angles = offsetProper.revert().getAngles(order);
86       *
87       *   System.out.println(alpha1 + " == " + angles[0]);
88       *   System.out.println(alpha2 + " == " + angles[1]);
89       *   System.out.println(alpha3 + " == " + angles[2]);
90       * </pre>
91       * @param inertialFrame inertial frame with respect to which orbit should be computed
92       * @param type type of Local Orbital Frame
93       * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
94       * @param alpha1 angle of the first elementary rotation
95       * @param alpha2 angle of the second elementary rotation
96       * @param alpha3 angle of the third elementary rotation
97       * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
98       */
99      public LofOffset(final Frame inertialFrame, final LOFType type,
100                      final RotationOrder order, final double alpha1,
101                      final double alpha2, final double alpha3) throws OrekitException {
102         this.type = type;
103         this.offset = new Rotation(order, alpha1, alpha2, alpha3).revert();
104         if (!inertialFrame.isPseudoInertial()) {
105             throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME_NOT_SUITABLE_FOR_DEFINING_ORBITS,
106                                       inertialFrame.getName());
107         }
108         this.inertialFrame = inertialFrame;
109     }
110 
111 
112     /** {@inheritDoc} */
113     public Attitude getAttitude(final PVCoordinatesProvider pvProv,
114                                 final AbsoluteDate date, final Frame frame)
115         throws OrekitException {
116 
117         // construction of the local orbital frame, using PV from inertial frame
118         final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
119         final Transform inertialToLof = type.transformFromInertial(date, pv);
120 
121         // take into account the specified start frame (which may not be an inertial one)
122         final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
123         final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
124 
125         // compose with offset rotation
126         return new Attitude(date, frame,
127                             offset.applyTo(frameToLof.getRotation()),
128                             offset.applyTo(frameToLof.getRotationRate()),
129                             offset.applyTo(frameToLof.getRotationAcceleration()));
130 
131     }
132 
133 }