1 /* Copyright 2002-2013 CS Systèmes d'Information
2 * Licensed to CS Systèmes d'Information (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.utils;
18
19 import java.io.Serializable;
20 import java.util.Collection;
21
22 import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
23 import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator;
24 import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
25 import org.apache.commons.math3.util.Pair;
26 import org.orekit.time.AbsoluteDate;
27 import org.orekit.time.TimeShiftable;
28
29 /** Simple container for Position/Velocity pairs.
30 * <p>
31 * The state can be slightly shifted to close dates. This shift is based on
32 * a simple linear model. It is <em>not</em> intended as a replacement for
33 * proper orbit propagation (it is not even Keplerian!) but should be sufficient
34 * for either small time shifts or coarse accuracy.
35 * </p>
36 * <p>
37 * This class is the angular counterpart to {@link AngularCoordinates}.
38 * </p>
39 * <p>Instances of this class are guaranteed to be immutable.</p>
40 * @author Fabien Maussion
41 * @author Luc Maisonobe
42 */
43 public class PVCoordinates implements TimeShiftable<PVCoordinates>, Serializable {
44
45 /** Fixed position/velocity at origin (both p and v are zero vectors). */
46 public static final PVCoordinates ZERO = new PVCoordinates(Vector3D.ZERO, Vector3D.ZERO);
47
48 /** Serializable UID. */
49 private static final long serialVersionUID = 4157449919684833834L;
50
51 /** The position. */
52 private final Vector3D position;
53
54 /** The velocity. */
55 private final Vector3D velocity;
56
57 /** Simple constructor.
58 * <p> Sets the Coordinates to default : (0 0 0) (0 0 0).</p>
59 */
60 public PVCoordinates() {
61 position = Vector3D.ZERO;
62 velocity = Vector3D.ZERO;
63 }
64
65 /** Builds a PVCoordinates pair.
66 * @param position the position vector (m)
67 * @param velocity the velocity vector (m/s)
68 */
69 public PVCoordinates(final Vector3D position, final Vector3D velocity) {
70 this.position = position;
71 this.velocity = velocity;
72 }
73
74 /** Multiplicative constructor
75 * <p>Build a PVCoordinates from another one and a scale factor.</p>
76 * <p>The PVCoordinates built will be a * pv</p>
77 * @param a scale factor
78 * @param pv base (unscaled) PVCoordinates
79 */
80 public PVCoordinates(final double a, final PVCoordinates pv) {
81 position = new Vector3D(a, pv.position);
82 velocity = new Vector3D(a, pv.velocity);
83 }
84
85 /** Subtractive constructor
86 * <p>Build a relative PVCoordinates from a start and an end position.</p>
87 * <p>The PVCoordinates built will be end - start.</p>
88 * @param start Starting PVCoordinates
89 * @param end ending PVCoordinates
90 */
91 public PVCoordinates(final PVCoordinates start, final PVCoordinates end) {
92 this.position = end.position.subtract(start.position);
93 this.velocity = end.velocity.subtract(start.velocity);
94 }
95
96 /** Linear constructor
97 * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
98 * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
99 * @param a1 first scale factor
100 * @param pv1 first base (unscaled) PVCoordinates
101 * @param a2 second scale factor
102 * @param pv2 second base (unscaled) PVCoordinates
103 */
104 public PVCoordinates(final double a1, final PVCoordinates pv1,
105 final double a2, final PVCoordinates pv2) {
106 position = new Vector3D(a1, pv1.position, a2, pv2.position);
107 velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity);
108 }
109
110 /** Linear constructor
111 * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
112 * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
113 * @param a1 first scale factor
114 * @param pv1 first base (unscaled) PVCoordinates
115 * @param a2 second scale factor
116 * @param pv2 second base (unscaled) PVCoordinates
117 * @param a3 third scale factor
118 * @param pv3 third base (unscaled) PVCoordinates
119 */
120 public PVCoordinates(final double a1, final PVCoordinates pv1,
121 final double a2, final PVCoordinates pv2,
122 final double a3, final PVCoordinates pv3) {
123 position = new Vector3D(a1, pv1.position, a2, pv2.position, a3, pv3.position);
124 velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity);
125 }
126
127 /** Linear constructor
128 * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
129 * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
130 * @param a1 first scale factor
131 * @param pv1 first base (unscaled) PVCoordinates
132 * @param a2 second scale factor
133 * @param pv2 second base (unscaled) PVCoordinates
134 * @param a3 third scale factor
135 * @param pv3 third base (unscaled) PVCoordinates
136 * @param a4 fourth scale factor
137 * @param pv4 fourth base (unscaled) PVCoordinates
138 */
139 public PVCoordinates(final double a1, final PVCoordinates pv1,
140 final double a2, final PVCoordinates pv2,
141 final double a3, final PVCoordinates pv3,
142 final double a4, final PVCoordinates pv4) {
143 position = new Vector3D(a1, pv1.position, a2, pv2.position, a3, pv3.position, a4, pv4.position);
144 velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity, a4, pv4.velocity);
145 }
146
147 /** Estimate velocity between two positions.
148 * <p>Estimation is based on a simple fixed velocity translation
149 * during the time interval between the two positions.</p>
150 * @param start start position
151 * @param end end position
152 * @param dt time elapsed between the dates of the two positions
153 * @return velocity allowing to go from start to end positions
154 */
155 public static Vector3D estimateVelocity(final Vector3D start, final Vector3D end, final double dt) {
156 final double scale = 1.0 / dt;
157 return new Vector3D(scale, end, -scale, start);
158 }
159
160 /** Get a time-shifted state.
161 * <p>
162 * The state can be slightly shifted to close dates. This shift is based on
163 * a simple linear model. It is <em>not</em> intended as a replacement for
164 * proper orbit propagation (it is not even Keplerian!) but should be sufficient
165 * for either small time shifts or coarse accuracy.
166 * </p>
167 * @param dt time shift in seconds
168 * @return a new state, shifted with respect to the instance (which is immutable)
169 */
170 public PVCoordinates shiftedBy(final double dt) {
171 return new PVCoordinates(new Vector3D(1, position, dt, velocity), velocity);
172 }
173
174 /** Interpolate position-velocity.
175 * <p>
176 * The interpolated instance is created by polynomial Hermite interpolation
177 * ensuring velocity remains the exact derivative of position.
178 * </p>
179 * <p>
180 * Note that even if first time derivatives (velocities)
181 * from sample can be ignored, the interpolated instance always includes
182 * interpolated derivatives. This feature can be used explicitly to
183 * compute these derivatives when it would be too complex to compute them
184 * from an analytical formula: just compute a few sample points from the
185 * explicit formula and set the derivatives to zero in these sample points,
186 * then use interpolation to add derivatives consistent with the positions.
187 * </p>
188 * @param date interpolation date
189 * @param useVelocities if true, use sample points velocities,
190 * otherwise ignore them and use only positions
191 * @param sample sample points on which interpolation should be done
192 * @return a new position-velocity, interpolated at specified date
193 */
194 public static PVCoordinates interpolate(final AbsoluteDate date, final boolean useVelocities,
195 final Collection<Pair<AbsoluteDate, PVCoordinates>> sample) {
196
197 // set up an interpolator taking derivatives into account
198 final HermiteInterpolator interpolator = new HermiteInterpolator();
199
200 // add sample points
201 if (useVelocities) {
202 // populate sample with position and velocity data
203 for (final Pair<AbsoluteDate, PVCoordinates> datedPV : sample) {
204 final Vector3D position = datedPV.getValue().getPosition();
205 final Vector3D velocity = datedPV.getValue().getVelocity();
206 interpolator.addSamplePoint(datedPV.getKey().getDate().durationFrom(date),
207 new double[] {
208 position.getX(), position.getY(), position.getZ()
209 }, new double[] {
210 velocity.getX(), velocity.getY(), velocity.getZ()
211 });
212 }
213 } else {
214 // populate sample with position data, ignoring velocity
215 for (final Pair<AbsoluteDate, PVCoordinates> datedPV : sample) {
216 final Vector3D position = datedPV.getValue().getPosition();
217 interpolator.addSamplePoint(datedPV.getKey().getDate().durationFrom(date),
218 new double[] {
219 position.getX(), position.getY(), position.getZ()
220 });
221 }
222 }
223
224 // interpolate
225 final DerivativeStructure zero = new DerivativeStructure(1, 1, 0, 0.0);
226 final DerivativeStructure[] p = interpolator.value(zero);
227
228 // build a new interpolated instance
229 return new PVCoordinates(new Vector3D(p[0].getValue(),
230 p[1].getValue(),
231 p[2].getValue()),
232 new Vector3D(p[0].getPartialDerivative(1),
233 p[1].getPartialDerivative(1),
234 p[2].getPartialDerivative(1)));
235
236 }
237
238 /** Gets the position.
239 * @return the position vector (m).
240 */
241 public Vector3D getPosition() {
242 return position;
243 }
244
245 /** Gets the velocity.
246 * @return the velocity vector (m/s).
247 */
248 public Vector3D getVelocity() {
249 return velocity;
250 }
251
252 /** Gets the momentum.
253 * <p>This vector is the p ⊗ v where p is position, v is velocity
254 * and ⊗ is cross product. To get the real physical angular momentum
255 * you need to multiply this vector by the mass.</p>
256 * <p>The returned vector is recomputed each time this method is called, it
257 * is not cached.</p>
258 * @return a new instance of the momentum vector (m<sup>2</sup>/s).
259 */
260 public Vector3D getMomentum() {
261 return Vector3D.crossProduct(position, velocity);
262 }
263
264 /**
265 * Get the angular velocity (spin) of this point as seen from the origin.
266 * <p/>
267 * The angular velocity vector is parallel to the {@link #getMomentum() angular
268 * momentum} and is computed by ω = p × v / ||p||<sup>2</sup>
269 *
270 * @return the angular velocity vector
271 * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
272 * Wikipedia</a>
273 */
274 public Vector3D getAngularVelocity() {
275 return this.getMomentum().scalarMultiply(1.0 / this.getPosition().getNormSq());
276 }
277
278 /** Get the opposite of the instance.
279 * @return a new position-velocity which is opposite to the instance
280 */
281 public PVCoordinates negate() {
282 return new PVCoordinates(position.negate(), velocity.negate());
283 }
284
285 /** Return a string representation of this position/velocity pair.
286 * @return string representation of this position/velocity pair
287 */
288 public String toString() {
289 final String comma = ", ";
290 return new StringBuffer().append('{').append("P(").
291 append(position.getX()).append(comma).
292 append(position.getY()).append(comma).
293 append(position.getZ()).append("), V(").
294 append(velocity.getX()).append(comma).
295 append(velocity.getY()).append(comma).
296 append(velocity.getZ()).append(")}").toString();
297 }
298
299 }