1 /* Copyright 2002-2013 CS Systèmes d'Information
2 * Licensed to CS Systèmes d'Information (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.semianalytical.dsst.utilities;
18
19 import java.util.Map;
20 import java.util.TreeMap;
21
22 import org.apache.commons.math3.util.FastMath;
23 import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory.MNSKey;
24
25 /** Compute the Γ<sup>m</sup><sub>n,s</sub>(γ) function from equation 2.7.1-(13).
26 *
27 * @author Romain Di Costanzo
28 */
29 public class GammaMnsFunction {
30
31 /** Storage map. */
32 private final Map<MNSKey, Double> map;
33
34 /** Factorial. */
35 private final double[] fact;
36
37 /** 1 + I * γ. */
38 private final double opIg;
39
40 /** I = +1 for a prograde orbit, -1 otherwise. */
41 private final int I;
42
43 /** Simple constructor.
44 * @param fact factorial array
45 * @param gamma γ
46 * @param I retrograde factor
47 */
48 public GammaMnsFunction(final double[] fact, final double gamma, final int I) {
49 this.fact = fact.clone();
50 this.opIg = 1. + I * gamma;
51 this.I = I;
52 this.map = new TreeMap<MNSKey, Double>();
53 }
54
55 /** Get Γ function value.
56 * @param m m
57 * @param n n
58 * @param s s
59 * @return Γ<sup>m</sup><sub>n, s</sub>(γ)
60 */
61 public double getValue(final int m, final int n, final int s) {
62 double res = 0.;
63 final MNSKey key = new MNSKey(m, n, s);
64 if (map.containsKey(key)) {
65 res = map.get(key);
66 } else {
67 if (s <= -m) {
68 res = FastMath.pow(-1, m - s) * FastMath.pow(2, s) * FastMath.pow(opIg, -I * m);
69 } else if (s >= m) {
70 res = FastMath.pow(2, -s) * FastMath.pow(opIg, I * m);
71 } else {
72 res = FastMath.pow(-1, m - s) * FastMath.pow(2, -m) * FastMath.pow(opIg, I * s);
73 res *= fact[n + m] * fact[n - m];
74 res /= fact[n + s] * fact[n - s];
75 }
76 map.put(key, res);
77 }
78 return res;
79 }
80
81 /** Get Γ function derivative.
82 * @param m m
83 * @param n n
84 * @param s s
85 * @return dΓ<sup>m</sup><sub>n,s</sub>(γ)/dγ
86 */
87 public double getDerivative(final int m, final int n, final int s) {
88 double res = 0.;
89 if (s <= -m) {
90 res = -m * I * getValue(m, n, s) / opIg;
91 } else if (s >= m) {
92 res = m * I * getValue(m, n, s) / opIg;
93 } else {
94 res = s * I * getValue(m, n, s) / opIg;
95 }
96 return res;
97 }
98
99 }