1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.forces.maneuvers.jacobians;
18
19 import org.hipparchus.geometry.euclidean.threed.Vector3D;
20 import org.hipparchus.linear.MatrixUtils;
21 import org.hipparchus.linear.QRDecomposition;
22 import org.hipparchus.linear.RealMatrix;
23 import org.hipparchus.linear.RealVector;
24 import org.orekit.forces.ForceModel;
25 import org.orekit.forces.maneuvers.Maneuver;
26 import org.orekit.forces.maneuvers.trigger.ManeuverTriggersResetter;
27 import org.orekit.propagation.AdditionalDataProvider;
28 import org.orekit.propagation.SpacecraftState;
29 import org.orekit.propagation.integration.AdditionalDerivativesProvider;
30 import org.orekit.time.AbsoluteDate;
31 import org.orekit.utils.TimeSpanMap;
32
33 /** Generator for one column of a Jacobian matrix for special case of trigger dates.
34 * <p>
35 * Typical use cases for this are estimation of maneuver start and stop date during
36 * either orbit determination or maneuver optimization.
37 * </p>
38 * <p>
39 * Let \((t_0, y_0)\) be the state at propagation start, \((t_1, y_1)\) be the state at
40 * maneuver trigger time, \((t_t, y_t)\) be the state at any arbitrary time \(t\) during
41 * propagation, and \(f_m(t, y)\) be the contribution of the maneuver to the global
42 * ODE \(\frac{dy}{dt} = f(t, y)\). We are interested in the Jacobian column
43 * \(\frac{\partial y_t}{\partial t_1}\).
44 * </p>
45 * <p>
46 * There are two parts in this Jacobian: the primary part corresponds to the full contribution
47 * of the jump in the dynamics due to the maneuver as it is delayed by a small amount \(dt_1\), whereas
48 * the secondary part corresponds to change of acceleration after maneuver start as the mass
49 * depletion is delayed and therefore the spacecraft mass is different from the mass for nominal
50 * start time.
51 * This second part is already contained in the first one when the mass is included in the transition matrix
52 * (7x7 instead of 6x6).
53 * </p>
54 * <p>
55 * The primary part is computed as follows. After trigger time \(t_1\) (according to propagation direction),
56 * \[\frac{\partial y_t}{\partial t_1} = \pm \frac{\partial y_t}{\partial y_1} f_m(t_1, y_1)\]
57 * where the sign depends on \(t_1\) being a start or stop trigger and propagation being forward
58 * or backward.
59 * </p>
60 * <p>
61 * We don't have \(\frac{\partial y_t}{\partial y_1}\) available if \(t_1 \neq t_0\), but we
62 * have \(\frac{\partial y_t}{\partial y_0}\) at any time since it can be computed by integrating
63 * variational equations for numerical propagation or by other closed form expressions for analytical
64 * propagators. We use the classical composition rule to recover the state transition matrix with
65 * respect to intermediate time \(t_1\):
66 * \[\frac{\partial y_t}{\partial y_0} = \frac{\partial y_t}{\partial y_1} \frac{\partial y_1}{\partial y_0}\]
67 * We deduce
68 * \[\frac{\partial y_t}{\partial y_1} = \frac{\partial y_t}{\partial y_0} \left(\frac{\partial y_1}{\partial y_0}\right)^{-1}\]
69 * </p>
70 * <p>
71 * The contribution of the primary part to the Jacobian column can therefore be computed using the following
72 * closed-form expression:
73 * \[\frac{\partial y_t}{\partial t_1}
74 * = \pm \frac{\partial y_t}{\partial y_0} \left(\frac{\partial y_1}{\partial y_0}\right)^{-1} f_m(t_1, y_1)
75 * = \frac{\partial y_t}{\partial y_0} c_1\]
76 * where \(c_1\) is the signed contribution of maneuver at \(t_1\) and is computed at trigger time
77 * by solving \(\frac{\partial y_1}{\partial y_0} c_1 = \pm f_m(t_1, y_1)\).
78 * </p>
79 * <p>
80 * As the primary part of the column is generated using a closed-form expression, this generator
81 * implements the {@link AdditionalDataProvider} interface and stores the column directly
82 * in the primary state during propagation.
83 * </p>
84 * <p>
85 * As the closed-form expression requires picking \(c_1\) at trigger time \(t_1\), it works only
86 * if propagation starts outside of the maneuver and passes over \(t_1\) during integration.
87 * </p>
88 * <p>
89 * The secondary part, if needed (as it is not required if the mass is already included the state transition matrix
90 * i.e. when the latter is 7x7), is computed as follows. Let m be the mass and m_s its value at switching time t_s.
91 * Let (x,y,z) be the position vector, (vx, vy, vz) the velocity
92 * and (ax, ay, az) the total acceleration, we have \(\dot \frac{\partial x} {\partial \partial m_s} = \frac{\partial vx }{\partial m_s}))
93 * and similar expressions for y and z. Furthermore, \(\dot \frac{\partial vx}{ \partial \partial m_s} = \frac{\partial ax }{\partial m}
94 * . \frac{\partial m }{\partial m_s} \), and symmetric equations for vy and vy. The fact is that \( \frac{\partial m}{ \partial m_s} = 1 \)
95 * assuming the mass rate q only depends on time. On the other hand, \( \frac{\partial m_s}{ \partial t_s }= q(t_s) \)/
96 * By the chain rule of derivation, one gets the contribution due to the mass depletion delay.
97 * </p>
98 * <p>
99 * The contribution of the secondary part to the Jacobian column can therefore be computed by integrating
100 * the partial derivative of the acceleration, to get the partial derivative of the position.
101 * </p>
102 * <p>
103 * As the secondary part of the column is generated using a differential equation, a separate
104 * underlying generator implementing the {@link AdditionalDerivativesProvider} interface is set up to
105 * perform the integration during propagation.
106 * </p>
107 * <p>
108 * This generator takes care to sum up the primary and secondary parts so the full column of the Jacobian
109 * is computed.
110 * </p>
111 * <p>
112 * The implementation takes care to <em>not</em> resetting \(c_1\) at propagation start.
113 * This allows to get proper Jacobian if we interrupt propagation in the middle of a maneuver
114 * and restart propagation where it left.
115 * </p>
116 * @author Luc Maisonobe
117 * @since 11.1
118 * @see MedianDate
119 * @see Duration
120 */
121 public class TriggerDate implements ManeuverTriggersResetter, AdditionalDataProvider<double[]> {
122
123 /** Threshold for decomposing state transition matrix at trigger time. */
124 private static final double DECOMPOSITION_THRESHOLD = 1.0e-10;
125
126 /** Name of the state for State Transition Matrix. */
127 private final String stmName;
128
129 /** Name of the parameter corresponding to the column. */
130 private final String triggerName;
131
132 /** Mass depletion effect. */
133 private final MassDepletionDelay massDepletionDelay;
134
135 /** Start/stop management flag. */
136 private final boolean manageStart;
137
138 /** Maneuver force model. */
139 private final Maneuver maneuver;
140
141 /** Event detector threshold. */
142 private final double threshold;
143
144 /** State dimension. */
145 private final int stateDimension;
146
147 /** Signed contribution of maneuver at trigger time ±(∂y₁/∂y₀)⁻¹ fₘ(t₁, y₁). */
148 private TimeSpanMap<double[]> contribution;
149
150 /** Trigger date. */
151 private AbsoluteDate trigger;
152
153 /** Indicator for forward propagation. */
154 private boolean forward;
155
156 /** Mass rate at trigger (sign depends on propagation direction). Set to zero until the maneuver has actually happened during a propagation. */
157 private double signedMassRateAtTrigger = 0.;
158
159 /** Constructor without mass as state variable in transition matrix.
160 * @param stmName name of State Transition Matrix state
161 * @param triggerName name of the parameter corresponding to the trigger date column
162 * @param manageStart if true, we compute derivatives with respect to maneuver start
163 * @param maneuver maneuver force model
164 * @param threshold event detector threshold
165 * @param nonGravitationalForces list of non-gravitational forces, used only if mass is not in STM
166 */
167 public TriggerDate(final String stmName, final String triggerName, final boolean manageStart,
168 final Maneuver maneuver, final double threshold, final ForceModel... nonGravitationalForces) {
169 this(stmName, triggerName, manageStart, maneuver, threshold, false, nonGravitationalForces);
170 }
171
172 /** Constructor.
173 * @param stmName name of State Transition Matrix state
174 * @param triggerName name of the parameter corresponding to the trigger date column
175 * @param manageStart if true, we compute derivatives with respect to maneuver start
176 * @param maneuver maneuver force model
177 * @param threshold event detector threshold
178 * @param isMassInStm flag on mass inclusion as state variable in STM
179 * @param nonGravitationalForces list of non-gravitational forces, used only if mass is not in STM
180 * @since 13.1
181 */
182 public TriggerDate(final String stmName, final String triggerName, final boolean manageStart,
183 final Maneuver maneuver, final double threshold, final boolean isMassInStm,
184 final ForceModel... nonGravitationalForces) {
185 this.stmName = stmName;
186 this.triggerName = triggerName;
187 this.massDepletionDelay = isMassInStm ? null : new MassDepletionDelay(triggerName, manageStart, maneuver, nonGravitationalForces);
188 this.manageStart = manageStart;
189 this.maneuver = maneuver;
190 this.threshold = threshold;
191 this.stateDimension = isMassInStm ? 7 : 6;
192 this.contribution = null;
193 this.trigger = null;
194 this.forward = true;
195 }
196
197 /** {@inheritDoc} */
198 @Override
199 public String getName() {
200 return triggerName;
201 }
202
203 /** {@inheritDoc}
204 * <p>
205 * The column state can be computed only if the State Transition Matrix state is available.
206 * </p>
207 */
208 @Override
209 public boolean yields(final SpacecraftState state) {
210 if (massDepletionDelay == null) {
211 return !state.hasAdditionalData(stmName);
212 } else {
213 return !(state.hasAdditionalData(stmName) && state.hasAdditionalData(massDepletionDelay.getName()));
214 }
215 }
216
217 /** Get the mass depletion effect processor. Can be null.
218 * @return mass depletion effect processor
219 */
220 public MassDepletionDelay getMassDepletionDelay() {
221 return massDepletionDelay;
222 }
223
224 /** {@inheritDoc} */
225 @Override
226 public void init(final SpacecraftState initialState, final AbsoluteDate target) {
227
228 // note that we reset contribution or triggered ONLY at start or if we change
229 // propagation direction
230 // this allows to get proper Jacobian if we interrupt propagation
231 // in the middle of a maneuver and restart propagation where it left
232 final boolean newForward = target.isAfterOrEqualTo(initialState);
233 if (contribution == null || (forward ^ newForward)) {
234 contribution = new TimeSpanMap<>(null);
235 trigger = null;
236 signedMassRateAtTrigger = 0.;
237 }
238
239 forward = newForward;
240
241 }
242
243 /** {@inheritDoc} */
244 @Override
245 public double[] getAdditionalData(final SpacecraftState state) {
246 // we check contribution rather than triggered because this method
247 // is called after maneuverTriggered and before resetState,
248 // when preparing the old state to be reset
249 final double[] c = contribution == null ? null : contribution.get(state.getDate());
250 if (c == null) {
251 // no thrust, no effect
252 return new double[stateDimension];
253 } else {
254
255 // primary effect: full maneuver contribution at (delayed) trigger date
256 final double[] effect = getStm(state).operate(c);
257
258 if (massDepletionDelay != null) {
259 // secondary effect: maneuver change throughout thrust as mass depletion is delayed (only needed when mass is not in the STM)
260 final double[] secondary = state.getAdditionalState(massDepletionDelay.getName());
261
262 // cumulate both effects
263 for (int i = 0; i < effect.length; ++i) {
264 effect[i] += secondary[i] * signedMassRateAtTrigger;
265 }
266 }
267
268 return effect;
269
270 }
271 }
272
273 /** {@inheritDoc}*/
274 @Override
275 public void maneuverTriggered(final SpacecraftState state, final boolean start) {
276 trigger = (start == manageStart) ? state.getDate() : null;
277 }
278
279 /** {@inheritDoc}*/
280 @Override
281 public SpacecraftState resetState(final SpacecraftState state) {
282
283 if (trigger == null) {
284 // this is not the maneuver trigger we expected (start vs. stop)
285 return state;
286 }
287
288 // get the acceleration near trigger time
289 final double[] parameters = maneuver.getParameters(state.getDate());
290 final SpacecraftState stateWhenFiring = state.shiftedBy((manageStart ? 2 : -2) * threshold);
291 final Vector3D acceleration = maneuver.acceleration(stateWhenFiring, parameters);
292
293 // initialize derivatives computation
294 final double sign = (forward == manageStart) ? -1 : +1;
295 final RealVector rhs = MatrixUtils.createRealVector(stateDimension);
296 rhs.setEntry(3, sign * acceleration.getX());
297 rhs.setEntry(4, sign * acceleration.getY());
298 rhs.setEntry(5, sign * acceleration.getZ());
299 signedMassRateAtTrigger = sign * maneuver.getPropulsionModel().getMassDerivatives(state, parameters);
300 if (stateDimension == 7) {
301 rhs.setEntry(6, signedMassRateAtTrigger);
302 }
303
304 // get State Transition Matrix with respect to Cartesian parameters at trigger time
305 final RealMatrix dY1dY0 = getStm(state);
306
307 // store contribution factor for derivatives scm = ±(∂y₁/∂y₀)⁻¹ fₘ(t₁, y₁)
308 final double[] c = new QRDecomposition(dY1dY0, DECOMPOSITION_THRESHOLD).getSolver().solve(rhs).toArray();
309 if (forward) {
310 contribution.addValidAfter(c, state.getDate(), false);
311 } else {
312 contribution.addValidBefore(c, state.getDate(), false);
313 }
314
315 // return unchanged state
316 return state;
317
318 }
319
320 /** Extract State Transition Matrix with respect to Cartesian parameters.
321 * @param state state containing the State Transition Matrix
322 * @return State Transition Matrix
323 */
324 private RealMatrix getStm(final SpacecraftState state) {
325 final double[] p = state.getAdditionalState(stmName);
326 final RealMatrix dYdY0 = MatrixUtils.createRealMatrix(stateDimension, stateDimension);
327 int index = 0;
328 for (int i = 0; i < stateDimension; ++i) {
329 for (int j = 0; j < stateDimension; ++j) {
330 dYdY0.setEntry(i, j, p[index++]);
331 }
332 }
333 return dYdY0;
334 }
335
336 }
337