1 /* Copyright 2002-2024 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.utils;
18
19 import org.hipparchus.analysis.differentiation.Derivative;
20 import org.hipparchus.geometry.euclidean.threed.FieldRotation;
21 import org.hipparchus.geometry.euclidean.threed.Rotation;
22 import org.hipparchus.geometry.euclidean.threed.RotationConvention;
23 import org.hipparchus.geometry.euclidean.threed.Vector3D;
24 import org.orekit.time.AbsoluteDate;
25 import org.orekit.time.TimeStamped;
26
27 /** {@link TimeStamped time-stamped} version of {@link AngularCoordinates}.
28 * <p>Instances of this class are guaranteed to be immutable.</p>
29 * @author Luc Maisonobe
30 * @since 7.0
31 */
32 public class TimeStampedAngularCoordinates extends AngularCoordinates implements TimeStamped {
33
34 /** Serializable UID. */
35 private static final long serialVersionUID = 20140723L;
36
37 /** The date. */
38 private final AbsoluteDate date;
39
40 /** Builds a rotation/rotation rate pair.
41 * @param date coordinates date
42 * @param rotation rotation
43 * @param rotationRate rotation rate Ω (rad/s)
44 * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²)
45 */
46 public TimeStampedAngularCoordinates(final AbsoluteDate date,
47 final Rotation rotation,
48 final Vector3D rotationRate,
49 final Vector3D rotationAcceleration) {
50 super(rotation, rotationRate, rotationAcceleration);
51 this.date = date;
52 }
53
54 /** Build the rotation that transforms a pair of pv coordinates into another pair.
55
56 * <p><em>WARNING</em>! This method requires much more stringent assumptions on
57 * its parameters than the similar {@link Rotation#Rotation(Vector3D, Vector3D,
58 * Vector3D, Vector3D) constructor} from the {@link Rotation Rotation} class.
59 * As far as the Rotation constructor is concerned, the {@code v₂} vector from
60 * the second pair can be slightly misaligned. The Rotation constructor will
61 * compensate for this misalignment and create a rotation that ensure {@code
62 * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT
63 * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be
64 * preserved, this constructor works <em>only</em> if the two pairs are fully
65 * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code
66 * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt
67 * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p>
68
69 * @param date coordinates date
70 * @param u1 first vector of the origin pair
71 * @param u2 second vector of the origin pair
72 * @param v1 desired image of u1 by the rotation
73 * @param v2 desired image of u2 by the rotation
74 * @param tolerance relative tolerance factor used to check singularities
75 */
76 public TimeStampedAngularCoordinates(final AbsoluteDate date,
77 final PVCoordinates u1, final PVCoordinates u2,
78 final PVCoordinates v1, final PVCoordinates v2,
79 final double tolerance) {
80 super(u1, u2, v1, v2, tolerance);
81 this.date = date;
82 }
83
84 /** Build one of the rotations that transform one pv coordinates into another one.
85
86 * <p>Except for a possible scale factor, if the instance were
87 * applied to the vector u it will produce the vector v. There is an
88 * infinite number of such rotations, this constructor choose the
89 * one with the smallest associated angle (i.e. the one whose axis
90 * is orthogonal to the (u, v) plane). If u and v are collinear, an
91 * arbitrary rotation axis is chosen.</p>
92
93 * @param date coordinates date
94 * @param u origin vector
95 * @param v desired image of u by the rotation
96 */
97 public TimeStampedAngularCoordinates(final AbsoluteDate date,
98 final PVCoordinates u, final PVCoordinates v) {
99 super(u, v);
100 this.date = date;
101 }
102
103 /** Builds a TimeStampedAngularCoordinates from a {@link FieldRotation}<{@link Derivative}>.
104 * <p>
105 * The rotation components must have time as their only derivation parameter and
106 * have consistent derivation orders.
107 * </p>
108 * @param date coordinates date
109 * @param r rotation with time-derivatives embedded within the coordinates
110 * @param <U> type of the derivative
111 */
112 public <U extends Derivative<U>>TimeStampedAngularCoordinates(final AbsoluteDate date,
113 final FieldRotation<U> r) {
114 super(r);
115 this.date = date;
116 }
117
118 /** {@inheritDoc} */
119 public AbsoluteDate getDate() {
120 return date;
121 }
122
123 /** Revert a rotation/rotation rate pair.
124 * Build a pair which reverse the effect of another pair.
125 * @return a new pair whose effect is the reverse of the effect
126 * of the instance
127 */
128 public TimeStampedAngularCoordinates revert() {
129 return new TimeStampedAngularCoordinates(date,
130 getRotation().revert(),
131 getRotation().applyInverseTo(getRotationRate().negate()),
132 getRotation().applyInverseTo(getRotationAcceleration().negate()));
133 }
134
135 /** Get a time-shifted state.
136 * <p>
137 * The state can be slightly shifted to close dates. This shift is based on
138 * a simple linear model. It is <em>not</em> intended as a replacement for
139 * proper attitude propagation but should be sufficient for either small
140 * time shifts or coarse accuracy.
141 * </p>
142 * @param dt time shift in seconds
143 * @return a new state, shifted with respect to the instance (which is immutable)
144 */
145 public TimeStampedAngularCoordinates shiftedBy(final double dt) {
146 final AngularCoordinates sac = super.shiftedBy(dt);
147 return new TimeStampedAngularCoordinates(date.shiftedBy(dt),
148 sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
149
150 }
151
152 /** Add an offset from the instance.
153 * <p>
154 * We consider here that the offset rotation is applied first and the
155 * instance is applied afterward. Note that angular coordinates do <em>not</em>
156 * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
157 * b.addOffset(a)} lead to <em>different</em> results in most cases.
158 * </p>
159 * <p>
160 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
161 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
162 * so that round trip applications are possible. This means that both {@code
163 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
164 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
165 * </p>
166 * @param offset offset to subtract
167 * @return new instance, with offset subtracted
168 * @see #subtractOffset(AngularCoordinates)
169 */
170 @Override
171 public TimeStampedAngularCoordinates addOffset(final AngularCoordinates offset) {
172 final Vector3D rOmega = getRotation().applyTo(offset.getRotationRate());
173 final Vector3D rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
174 return new TimeStampedAngularCoordinates(date,
175 getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR),
176 getRotationRate().add(rOmega),
177 new Vector3D( 1.0, getRotationAcceleration(),
178 1.0, rOmegaDot,
179 -1.0, Vector3D.crossProduct(getRotationRate(), rOmega)));
180 }
181
182 /** Subtract an offset from the instance.
183 * <p>
184 * We consider here that the offset rotation is applied first and the
185 * instance is applied afterward. Note that angular coordinates do <em>not</em>
186 * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
187 * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
188 * </p>
189 * <p>
190 * The two methods {@link #addOffset(AngularCoordinates) addOffset} and
191 * {@link #subtractOffset(AngularCoordinates) subtractOffset} are designed
192 * so that round trip applications are possible. This means that both {@code
193 * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
194 * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
195 * </p>
196 * @param offset offset to subtract
197 * @return new instance, with offset subtracted
198 * @see #addOffset(AngularCoordinates)
199 */
200 @Override
201 public TimeStampedAngularCoordinates subtractOffset(final AngularCoordinates offset) {
202 return addOffset(offset.revert());
203 }
204
205 }