1   /* Copyright 2002-2024 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.events;
18  
19  import java.util.function.Function;
20  
21  import org.hipparchus.analysis.UnivariateFunction;
22  import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
23  import org.hipparchus.util.FastMath;
24  import org.hipparchus.util.MathUtils;
25  import org.orekit.errors.OrekitIllegalArgumentException;
26  import org.orekit.errors.OrekitMessages;
27  import org.orekit.orbits.CircularOrbit;
28  import org.orekit.orbits.EquinoctialOrbit;
29  import org.orekit.orbits.KeplerianOrbit;
30  import org.orekit.orbits.Orbit;
31  import org.orekit.orbits.OrbitType;
32  import org.orekit.orbits.PositionAngleType;
33  import org.orekit.propagation.SpacecraftState;
34  import org.orekit.propagation.events.handlers.EventHandler;
35  import org.orekit.propagation.events.handlers.StopOnEvent;
36  import org.orekit.time.AbsoluteDate;
37  import org.orekit.utils.TimeSpanMap;
38  
39  /** Detector for in-orbit position angle.
40   * <p>
41   * The detector is based on anomaly for {@link OrbitType#KEPLERIAN Keplerian}
42   * orbits, latitude argument for {@link OrbitType#CIRCULAR circular} orbits,
43   * or longitude argument for {@link OrbitType#EQUINOCTIAL equinoctial} orbits.
44   * It does not support {@link OrbitType#CARTESIAN Cartesian} orbits. The
45   * angles can be either {@link PositionAngleType#TRUE true}, {@link PositionAngleType#MEAN
46   * mean} or {@link PositionAngleType#ECCENTRIC eccentric} angles.
47   * </p>
48   * @author Luc Maisonobe
49   * @since 7.1
50   */
51  public class PositionAngleDetector extends AbstractDetector<PositionAngleDetector> {
52  
53      /** Orbit type defining the angle type. */
54      private final OrbitType orbitType;
55  
56      /** Type of position angle. */
57      private final PositionAngleType positionAngleType;
58  
59      /** Fixed angle to be crossed. */
60      private final double angle;
61  
62      /** Position angle extraction function. */
63      private final Function<Orbit, Double> positionAngleExtractor;
64  
65      /** Estimators for the offset angle, taking care of 2π wrapping and g function continuity. */
66      private TimeSpanMap<OffsetEstimator> offsetEstimators;
67  
68      /** Build a new detector.
69       * <p>The new instance uses default values for maximal checking interval
70       * ({@link #DEFAULT_MAXCHECK}) and convergence threshold ({@link
71       * #DEFAULT_THRESHOLD}).</p>
72       * @param orbitType orbit type defining the angle type
73       * @param positionAngleType type of position angle
74       * @param angle fixed angle to be crossed
75       * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
76       */
77      public PositionAngleDetector(final OrbitType orbitType, final PositionAngleType positionAngleType,
78                                   final double angle)
79          throws OrekitIllegalArgumentException {
80          this(DEFAULT_MAXCHECK, DEFAULT_THRESHOLD, orbitType, positionAngleType, angle);
81      }
82  
83      /** Build a detector.
84       * <p> This instance uses by default the {@link StopOnEvent} handler </p>
85       * @param maxCheck maximal checking interval (s)
86       * @param threshold convergence threshold (s)
87       * @param orbitType orbit type defining the angle type
88       * @param positionAngleType type of position angle
89       * @param angle fixed angle to be crossed
90       * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
91       */
92      public PositionAngleDetector(final double maxCheck, final double threshold,
93                                   final OrbitType orbitType, final PositionAngleType positionAngleType,
94                                   final double angle)
95          throws OrekitIllegalArgumentException {
96          this(AdaptableInterval.of(maxCheck), threshold, DEFAULT_MAX_ITER, new StopOnEvent(),
97               orbitType, positionAngleType, angle);
98      }
99  
100     /** Protected constructor with full parameters.
101      * <p>
102      * This constructor is not public as users are expected to use the builder
103      * API with the various {@code withXxx()} methods to set up the instance
104      * in a readable manner without using a huge amount of parameters.
105      * </p>
106      * @param maxCheck maximum checking interval
107      * @param threshold convergence threshold (s)
108      * @param maxIter maximum number of iterations in the event time search
109      * @param handler event handler to call at event occurrences
110      * @param orbitType orbit type defining the angle type
111      * @param positionAngleType type of position angle
112      * @param angle fixed angle to be crossed
113      * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
114      */
115     protected PositionAngleDetector(final AdaptableInterval maxCheck, final double threshold,
116                                     final int maxIter, final EventHandler handler,
117                                     final OrbitType orbitType, final PositionAngleType positionAngleType,
118                                     final double angle)
119         throws OrekitIllegalArgumentException {
120 
121         super(maxCheck, threshold, maxIter, handler);
122 
123         this.orbitType        = orbitType;
124         this.positionAngleType = positionAngleType;
125         this.angle            = angle;
126         this.offsetEstimators = null;
127 
128         switch (orbitType) {
129             case KEPLERIAN:
130                 positionAngleExtractor = o -> ((KeplerianOrbit) orbitType.convertType(o)).getAnomaly(positionAngleType);
131                 break;
132             case CIRCULAR:
133                 positionAngleExtractor = o -> ((CircularOrbit) orbitType.convertType(o)).getAlpha(positionAngleType);
134                 break;
135             case EQUINOCTIAL:
136                 positionAngleExtractor = o -> ((EquinoctialOrbit) orbitType.convertType(o)).getL(positionAngleType);
137                 break;
138             default:
139                 final String sep = ", ";
140                 throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_TYPE_NOT_ALLOWED,
141                                                          orbitType,
142                                                          OrbitType.KEPLERIAN   + sep +
143                                                          OrbitType.CIRCULAR    + sep +
144                                                          OrbitType.EQUINOCTIAL);
145         }
146 
147     }
148 
149     /** {@inheritDoc} */
150     @Override
151     protected PositionAngleDetector create(final AdaptableInterval newMaxCheck, final double newThreshold,
152                                            final int newMaxIter,
153                                            final EventHandler newHandler) {
154         return new PositionAngleDetector(newMaxCheck, newThreshold, newMaxIter, newHandler,
155                                          orbitType, positionAngleType, angle);
156     }
157 
158     /** Get the orbit type defining the angle type.
159      * @return orbit type defining the angle type
160      */
161     public OrbitType getOrbitType() {
162         return orbitType;
163     }
164 
165     /** Get the type of position angle.
166      * @return type of position angle
167      */
168     public PositionAngleType getPositionAngleType() {
169         return positionAngleType;
170     }
171 
172     /** Get the fixed angle to be crossed (radians).
173      * @return fixed angle to be crossed (radians)
174      */
175     public double getAngle() {
176         return angle;
177     }
178 
179     /** {@inheritDoc} */
180     public void init(final SpacecraftState s0, final AbsoluteDate t) {
181         super.init(s0, t);
182         offsetEstimators = new TimeSpanMap<>(new OffsetEstimator(s0.getOrbit(), +1.0));
183     }
184 
185     /** Compute the value of the detection function.
186      * <p>
187      * The value is the angle difference between the spacecraft and the fixed
188      * angle to be crossed, with some sign tweaks to ensure continuity.
189      * These tweaks imply the {@code increasing} flag in events detection becomes
190      * irrelevant here! As an example, the angle always increase in a Keplerian
191      * orbit, but this g function will increase and decrease so it
192      * will cross the zero value once per orbit, in increasing and decreasing
193      * directions on alternate orbits..
194      * </p>
195      * @param s the current state information: date, kinematics, attitude
196      * @return angle difference between the spacecraft and the fixed
197      * angle, with some sign tweaks to ensure continuity
198      */
199     public double g(final SpacecraftState s) {
200 
201         final Orbit orbit = s.getOrbit();
202 
203         // angle difference
204         OffsetEstimator estimator = offsetEstimators.get(s.getDate());
205         double          delta     = estimator.delta(orbit);
206 
207         // we use a value greater than π for handover in order to avoid
208         // several switches to be estimated as the calling propagator
209         // and Orbit.shiftedBy have different accuracy. It is sufficient
210         // to have a handover roughly opposite to the detected position angle
211         while (FastMath.abs(delta) >= 3.5) {
212             // we are too far away from the current estimator, we need to set up a new one
213             // ensuring that we do have a crossing event in the current orbit
214             // and we ensure sign continuity with the current estimator
215 
216             // find when the previous estimator becomes invalid
217             final AbsoluteDate handover = estimator.dateForOffset(FastMath.copySign(FastMath.PI, delta), orbit);
218 
219             // perform handover to a new estimator at this date
220             estimator = new OffsetEstimator(orbit, delta);
221             delta     = estimator.delta(orbit);
222             if (isForward()) {
223                 offsetEstimators.addValidAfter(estimator, handover.getDate(), false);
224             } else {
225                 offsetEstimators.addValidBefore(estimator, handover.getDate(), false);
226             }
227 
228         }
229 
230         return delta;
231 
232     }
233 
234     /** Local class for estimating offset angle, handling 2π wrap-up and sign continuity. */
235     private class OffsetEstimator {
236 
237         /** Target angle. */
238         private final double target;
239 
240         /** Sign correction to offset. */
241         private final double sign;
242 
243         /** Reference angle. */
244         private final double r0;
245 
246         /** Slope of the linearized model. */
247         private final double r1;
248 
249         /** Reference date. */
250         private final AbsoluteDate t0;
251 
252         /** Simple constructor.
253          * @param orbit current orbit
254          * @param currentSign desired sign of the offset at current orbit time (magnitude is ignored)
255          */
256         OffsetEstimator(final Orbit orbit, final double currentSign) {
257             r0     = positionAngleExtractor.apply(orbit);
258             target = MathUtils.normalizeAngle(angle, r0);
259             sign   = FastMath.copySign(1.0, (r0 - target) * currentSign);
260             r1     = orbit.getKeplerianMeanMotion();
261             t0     = orbit.getDate();
262         }
263 
264         /** Compute offset from reference angle.
265          * @param orbit current orbit
266          * @return offset between current angle and reference angle
267          */
268         public double delta(final Orbit orbit) {
269             final double rawAngle        = positionAngleExtractor.apply(orbit);
270             final double linearReference = r0 + r1 * orbit.getDate().durationFrom(t0);
271             final double linearizedAngle = MathUtils.normalizeAngle(rawAngle, linearReference);
272             return sign * (linearizedAngle - target);
273         }
274 
275         /** Find date at which offset reaches specified value.
276          * <p>
277          * This computation is an approximation because it relies on
278          * {@link Orbit#shiftedBy(double)} only.
279          * </p>
280          * @param offset target value for offset angle
281          * @param orbit current orbit
282          * @return approximate date at which offset reached specified value
283          */
284         public AbsoluteDate dateForOffset(final double offset, final Orbit orbit) {
285 
286             // bracket the search
287             final double period = orbit.getKeplerianPeriod();
288             final double delta0 = delta(orbit);
289             final double searchInf;
290             final double searchSup;
291             if ((delta0 - offset) * sign >= 0) {
292                 // the date is before current orbit
293                 searchInf = -period;
294                 searchSup = 0;
295             } else {
296                 // the date is after current orbit
297                 searchInf = 0;
298                 searchSup = +period;
299             }
300 
301             // find the date as an offset from current orbit
302             final BracketingNthOrderBrentSolver solver = new BracketingNthOrderBrentSolver(getThreshold(), 5);
303             final UnivariateFunction            f      = dt -> delta(orbit.shiftedBy(dt)) - offset;
304             final double                        root   = solver.solve(getMaxIterationCount(), f, searchInf, searchSup);
305 
306             return orbit.getDate().shiftedBy(root);
307 
308         }
309 
310     }
311 
312 }