1 /* Copyright 2002-2024 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.forces.maneuvers;
18
19 import java.util.Arrays;
20
21 import org.hipparchus.geometry.euclidean.threed.Vector3D;
22 import org.hipparchus.util.FastMath;
23 import org.orekit.frames.Frame;
24 import org.orekit.orbits.Orbit;
25 import org.orekit.orbits.OrbitType;
26 import org.orekit.orbits.PositionAngleType;
27 import org.orekit.propagation.SpacecraftState;
28 import org.orekit.propagation.analytical.AdapterPropagator;
29 import org.orekit.time.AbsoluteDate;
30 import org.orekit.utils.Constants;
31
32 /** Analytical model for small maneuvers.
33 * <p>The aim of this model is to compute quickly the effect at date t₁
34 * of a small maneuver performed at an earlier date t₀. Both the
35 * direct effect of the maneuver and the Jacobian of this effect with respect to
36 * maneuver parameters are available.
37 * </p>
38 * <p>These effect are computed analytically using two Jacobian matrices:
39 * <ol>
40 * <li>J₀: Jacobian of Keplerian or equinoctial elements with respect
41 * to Cartesian parameters at date t₀ allows to compute
42 * maneuver effect as a change in orbital elements at maneuver date t₀,</li>
43 * <li>J<sub>1/0</sub>: Jacobian of Keplerian or equinoctial elements
44 * at date t₁ with respect to Keplerian or equinoctial elements
45 * at date t₀ allows to propagate the change in orbital elements
46 * to final date t₁.</li>
47 * </ol>
48 *
49 * <p>
50 * The second Jacobian, J<sub>1/0</sub>, is computed using a simple Keplerian
51 * model, i.e. it is the identity except for the mean motion row which also includes
52 * an off-diagonal element due to semi-major axis change.
53 * </p>
54 * <p>
55 * The orbital elements change at date t₁ can be added to orbital elements
56 * extracted from state, and the final elements taking account the changes are then
57 * converted back to appropriate type, which may be different from Keplerian or
58 * equinoctial elements.
59 * </p>
60 * <p>
61 * Note that this model takes <em>only</em> Keplerian effects into account. This means
62 * that using only this class to compute an inclination maneuver in Low Earth Orbit will
63 * <em>not</em> change ascending node drift rate despite inclination has changed (the
64 * same would be true for a semi-major axis change of course). In order to take this
65 * drift into account, an instance of {@link
66 * org.orekit.propagation.analytical.J2DifferentialEffect J2DifferentialEffect}
67 * must be used together with an instance of this class.
68 * </p>
69 * @author Luc Maisonobe
70 */
71 public class SmallManeuverAnalyticalModel implements AdapterPropagator.DifferentialEffect {
72
73 /** State at maneuver date (before maneuver occurrence). */
74 private final SpacecraftState state0;
75
76 /** Inertial velocity increment. */
77 private final Vector3D inertialDV;
78
79 /** Mass change ratio. */
80 private final double massRatio;
81
82 /** Type of orbit used for internal Jacobians. */
83 private final OrbitType type;
84
85 /** Initial Keplerian (or equinoctial) Jacobian with respect to maneuver. */
86 private final double[][] j0;
87
88 /** Time derivative of the initial Keplerian (or equinoctial) Jacobian with respect to maneuver. */
89 private double[][] j0Dot;
90
91 /** Mean anomaly change factor. */
92 private final double ksi;
93
94 /** Build a maneuver defined in spacecraft frame with default orbit type.
95 * @param state0 state at maneuver date, <em>before</em> the maneuver
96 * is performed
97 * @param dV velocity increment in spacecraft frame
98 * @param isp engine specific impulse (s)
99 */
100 public SmallManeuverAnalyticalModel(final SpacecraftState state0,
101 final Vector3D dV, final double isp) {
102 this(state0, state0.getFrame(),
103 state0.getAttitude().getRotation().applyInverseTo(dV),
104 isp);
105 }
106
107 /** Build a maneuver defined in spacecraft frame.
108 * @param state0 state at maneuver date, <em>before</em> the maneuver
109 * is performed
110 * @param orbitType orbit type to be used later on in Jacobian conversions
111 * @param dV velocity increment in spacecraft frame
112 * @param isp engine specific impulse (s)
113 * @since 12.1 orbit type added as input
114 */
115 public SmallManeuverAnalyticalModel(final SpacecraftState state0, final OrbitType orbitType,
116 final Vector3D dV, final double isp) {
117 this(state0, orbitType, state0.getFrame(),
118 state0.getAttitude().getRotation().applyInverseTo(dV),
119 isp);
120 }
121
122 /** Build a maneuver defined in user-specified frame.
123 * @param state0 state at maneuver date, <em>before</em> the maneuver
124 * is performed
125 * @param frame frame in which velocity increment is defined
126 * @param dV velocity increment in specified frame
127 * @param isp engine specific impulse (s)
128 */
129 public SmallManeuverAnalyticalModel(final SpacecraftState state0, final Frame frame,
130 final Vector3D dV, final double isp) {
131 // No orbit type specified, use equinoctial orbit type if possible, Keplerian if nearly hyperbolic orbits
132 this(state0, (state0.getE() < 0.9) ? OrbitType.EQUINOCTIAL : OrbitType.KEPLERIAN, frame, dV, isp);
133 }
134
135 /** Build a maneuver defined in user-specified frame.
136 * @param state0 state at maneuver date, <em>before</em> the maneuver
137 * is performed
138 * @param orbitType orbit type to be used later on in Jacobian conversions
139 * @param frame frame in which velocity increment is defined
140 * @param dV velocity increment in specified frame
141 * @param isp engine specific impulse (s)
142 * @since 12.1 orbit type added as input
143 */
144 public SmallManeuverAnalyticalModel(final SpacecraftState state0, final OrbitType orbitType,
145 final Frame frame, final Vector3D dV, final double isp) {
146
147 this.state0 = state0;
148 this.massRatio = FastMath.exp(-dV.getNorm() / (Constants.G0_STANDARD_GRAVITY * isp));
149 this.type = orbitType;
150
151 // compute initial Jacobian
152 final double[][] fullJacobian = new double[6][6];
153 j0 = new double[6][3];
154 final Orbit orbit0 = orbitType.convertType(state0.getOrbit());
155 orbit0.getJacobianWrtCartesian(PositionAngleType.MEAN, fullJacobian);
156 for (int i = 0; i < j0.length; ++i) {
157 System.arraycopy(fullJacobian[i], 3, j0[i], 0, 3);
158 }
159
160 // use lazy evaluation for j0Dot, as it is used only when Jacobians are evaluated
161 j0Dot = null;
162
163 // compute maneuver effect on Keplerian (or equinoctial) elements
164 inertialDV = frame.getStaticTransformTo(state0.getFrame(), state0.getDate())
165 .transformVector(dV);
166
167 // compute mean anomaly change: dM(t1) = dM(t0) + ksi * da * (t1 - t0)
168 final double mu = state0.getMu();
169 final double a = state0.getA();
170 ksi = -1.5 * FastMath.sqrt(mu / a) / (a * a);
171
172 }
173
174 /** Get the date of the maneuver.
175 * @return date of the maneuver
176 */
177 public AbsoluteDate getDate() {
178 return state0.getDate();
179 }
180
181 /** Get the inertial velocity increment of the maneuver.
182 * @return velocity increment in a state-dependent inertial frame
183 * @see #getInertialFrame()
184 */
185 public Vector3D getInertialDV() {
186 return inertialDV;
187 }
188
189 /** Get the inertial frame in which the velocity increment is defined.
190 * @return inertial frame in which the velocity increment is defined
191 * @see #getInertialDV()
192 */
193 public Frame getInertialFrame() {
194 return state0.getFrame();
195 }
196
197 /** Compute the effect of the maneuver on an orbit.
198 * @param orbit1 original orbit at t₁, without maneuver
199 * @return orbit at t₁, taking the maneuver
200 * into account if t₁ > t₀
201 * @see #apply(SpacecraftState)
202 * @see #getJacobian(Orbit, PositionAngleType, double[][])
203 */
204 public Orbit apply(final Orbit orbit1) {
205
206 if (orbit1.getDate().compareTo(state0.getDate()) <= 0) {
207 // the maneuver has not occurred yet, don't change anything
208 return orbit1;
209 }
210
211 return orbit1.getType().convertType(updateOrbit(orbit1));
212
213 }
214
215 /** Compute the effect of the maneuver on a spacecraft state.
216 * @param state1 original spacecraft state at t₁,
217 * without maneuver
218 * @return spacecraft state at t₁, taking the maneuver
219 * into account if t₁ > t₀
220 * @see #apply(Orbit)
221 * @see #getJacobian(Orbit, PositionAngleType, double[][])
222 */
223 public SpacecraftState apply(final SpacecraftState state1) {
224
225 if (state1.getDate().compareTo(state0.getDate()) <= 0) {
226 // the maneuver has not occurred yet, don't change anything
227 return state1;
228 }
229
230 return new SpacecraftState(state1.getOrbit().getType().convertType(updateOrbit(state1.getOrbit())),
231 state1.getAttitude(), updateMass(state1.getMass()));
232
233 }
234
235 /** Compute the effect of the maneuver on an orbit.
236 * @param orbit1 original orbit at t₁, without maneuver
237 * @return orbit at t₁, always taking the maneuver into account, always in the internal type
238 */
239 private Orbit updateOrbit(final Orbit orbit1) {
240
241 // compute maneuver effect
242 final double dt = orbit1.getDate().durationFrom(state0.getDate());
243 final double x = inertialDV.getX();
244 final double y = inertialDV.getY();
245 final double z = inertialDV.getZ();
246 final double[] delta = new double[6];
247 for (int i = 0; i < delta.length; ++i) {
248 delta[i] = j0[i][0] * x + j0[i][1] * y + j0[i][2] * z;
249 }
250 delta[5] += ksi * delta[0] * dt;
251
252 // convert current orbital state to Keplerian or equinoctial elements
253 final double[] parameters = new double[6];
254 type.mapOrbitToArray(type.convertType(orbit1), PositionAngleType.MEAN, parameters, null);
255 for (int i = 0; i < delta.length; ++i) {
256 parameters[i] += delta[i];
257 }
258
259 // build updated orbit as Keplerian or equinoctial elements
260 return type.mapArrayToOrbit(parameters, null, PositionAngleType.MEAN,
261 orbit1.getDate(), orbit1.getMu(), orbit1.getFrame());
262
263 }
264
265 /** Compute the Jacobian of the orbit with respect to maneuver parameters.
266 * <p>
267 * The Jacobian matrix is a 6x4 matrix. Element jacobian[i][j] corresponds to
268 * the partial derivative of orbital parameter i with respect to maneuver
269 * parameter j. The rows order is the same order as used in {@link
270 * Orbit#getJacobianWrtCartesian(PositionAngleType, double[][]) Orbit.getJacobianWrtCartesian}
271 * method. Columns (0, 1, 2) correspond to the velocity increment coordinates
272 * (ΔV<sub>x</sub>, ΔV<sub>y</sub>, ΔV<sub>z</sub>) in the
273 * inertial frame returned by {@link #getInertialFrame()}, and column 3
274 * corresponds to the maneuver date t₀.
275 * </p>
276 * @param orbit1 original orbit at t₁, without maneuver
277 * @param positionAngleType type of the position angle to use
278 * @param jacobian placeholder 6x4 (or larger) matrix to be filled with the Jacobian, if matrix
279 * is larger than 6x4, only the 6x4 upper left corner will be modified
280 * @see #apply(Orbit)
281 */
282 public void getJacobian(final Orbit orbit1, final PositionAngleType positionAngleType,
283 final double[][] jacobian) {
284
285 final double dt = orbit1.getDate().durationFrom(state0.getDate());
286 if (dt < 0) {
287 // the maneuver has not occurred yet, Jacobian is null
288 for (int i = 0; i < 6; ++i) {
289 Arrays.fill(jacobian[i], 0, 4, 0.0);
290 }
291 return;
292 }
293
294 // derivatives of Keplerian/equinoctial elements with respect to velocity increment
295 final double x = inertialDV.getX();
296 final double y = inertialDV.getY();
297 final double z = inertialDV.getZ();
298 for (int i = 0; i < 6; ++i) {
299 System.arraycopy(j0[i], 0, jacobian[i], 0, 3);
300 }
301 for (int j = 0; j < 3; ++j) {
302 jacobian[5][j] += ksi * dt * j0[0][j];
303 }
304
305 // derivatives of Keplerian/equinoctial elements with respect to date
306 evaluateJ0Dot();
307 for (int i = 0; i < 6; ++i) {
308 jacobian[i][3] = j0Dot[i][0] * x + j0Dot[i][1] * y + j0Dot[i][2] * z;
309 }
310 final double da = j0[0][0] * x + j0[0][1] * y + j0[0][2] * z;
311 jacobian[5][3] += ksi * (jacobian[0][3] * dt - da);
312
313 if (orbit1.getType() != type || positionAngleType != PositionAngleType.MEAN) {
314
315 // convert to derivatives of Cartesian parameters
316 final double[][] j2 = new double[6][6];
317 final double[][] pvJacobian = new double[6][4];
318 final Orbit updated = updateOrbit(orbit1);
319 updated.getJacobianWrtParameters(PositionAngleType.MEAN, j2);
320 for (int i = 0; i < 6; ++i) {
321 for (int j = 0; j < 4; ++j) {
322 pvJacobian[i][j] = j2[i][0] * jacobian[0][j] + j2[i][1] * jacobian[1][j] +
323 j2[i][2] * jacobian[2][j] + j2[i][3] * jacobian[3][j] +
324 j2[i][4] * jacobian[4][j] + j2[i][5] * jacobian[5][j];
325 }
326 }
327
328 // convert to derivatives of specified parameters
329 final double[][] j3 = new double[6][6];
330 orbit1.getType().convertType(updated).getJacobianWrtCartesian(positionAngleType, j3);
331 for (int j = 0; j < 4; ++j) {
332 for (int i = 0; i < 6; ++i) {
333 jacobian[i][j] = j3[i][0] * pvJacobian[0][j] + j3[i][1] * pvJacobian[1][j] +
334 j3[i][2] * pvJacobian[2][j] + j3[i][3] * pvJacobian[3][j] +
335 j3[i][4] * pvJacobian[4][j] + j3[i][5] * pvJacobian[5][j];
336 }
337 }
338
339 }
340
341 }
342
343 /** Lazy evaluation of the initial Jacobian time derivative.
344 */
345 private void evaluateJ0Dot() {
346
347 if (j0Dot == null) {
348
349 j0Dot = new double[6][3];
350 final double dt = 1.0e-5 / state0.getOrbit().getKeplerianMeanMotion();
351 final Orbit orbit = type.convertType(state0.getOrbit());
352
353 // compute shifted Jacobians
354 final double[][] j0m1 = new double[6][6];
355 orbit.shiftedBy(-1 * dt).getJacobianWrtCartesian(PositionAngleType.MEAN, j0m1);
356 final double[][] j0p1 = new double[6][6];
357 orbit.shiftedBy(+1 * dt).getJacobianWrtCartesian(PositionAngleType.MEAN, j0p1);
358
359 // evaluate derivative by finite differences
360 for (int i = 0; i < j0Dot.length; ++i) {
361 final double[] m1Row = j0m1[i];
362 final double[] p1Row = j0p1[i];
363 final double[] j0DotRow = j0Dot[i];
364 for (int j = 0; j < 3; ++j) {
365 j0DotRow[j] = (p1Row[j + 3] - m1Row[j + 3]) / (2 * dt);
366 }
367 }
368
369 }
370
371 }
372
373 /** Update a spacecraft mass due to maneuver.
374 * @param mass masse before maneuver
375 * @return mass after maneuver
376 */
377 public double updateMass(final double mass) {
378 return massRatio * mass;
379 }
380
381 }