Class FieldCircularOrbit<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.orekit.orbits.FieldOrbit<T>
-
- org.orekit.orbits.FieldCircularOrbit<T>
-
- Type Parameters:
T
- type of the field elements
- All Implemented Interfaces:
PositionAngleBased
,FieldTimeShiftable<FieldOrbit<T>,T>
,FieldTimeStamped<T>
,TimeShiftable<FieldOrbit<T>>
,FieldPVCoordinatesProvider<T>
public class FieldCircularOrbit<T extends CalculusFieldElement<T>> extends FieldOrbit<T> implements PositionAngleBased
This class handles circular orbital parameters.The parameters used internally are the circular elements which can be related to Keplerian elements as follows:
- a
- ex = e cos(ω)
- ey = e sin(ω)
- i
- Ω
- αv = v + ω
The conversion equations from and to Keplerian elements given above hold only when both sides are unambiguously defined, i.e. when orbit is neither equatorial nor circular. When orbit is circular (but not equatorial), the circular parameters are still unambiguously defined whereas some Keplerian elements (more precisely ω and Ω) become ambiguous. When orbit is equatorial, neither the Keplerian nor the circular parameters can be defined unambiguously.
equinoctial orbits
is the recommended way to represent orbits.The instance
CircularOrbit
is guaranteed to be immutable.- Since:
- 9.0
- Author:
- Luc Maisonobe, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
Orbit
,KeplerianOrbit
,CartesianOrbit
,EquinoctialOrbit
-
-
Constructor Summary
Constructors Constructor Description FieldCircularOrbit(Field<T> field, CircularOrbit op)
Constructor from Field and CircularOrbit.FieldCircularOrbit(Field<T> field, Orbit op)
Constructor from Field and Orbit.FieldCircularOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu)
Constructor from Cartesian parameters.FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu)
Constructor from Cartesian parameters.FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, T aDot, T exDot, T eyDot, T iDot, T raanDot, T alphaDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu)
Creates a new instance.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description void
addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesprotected T[][]
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.protected T[][]
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.protected T[][]
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.static <T extends CalculusFieldElement<T>>
TeccentricToMean(T alphaE, T ex, T ey)
Computes the mean latitude argument from the eccentric latitude argument.static <T extends CalculusFieldElement<T>>
TeccentricToTrue(T alphaE, T ex, T ey)
Computes the true latitude argument from the eccentric latitude argument.T
getA()
Get the semi-major axis.T
getADot()
Get the semi-major axis derivative.T
getAlpha(PositionAngleType type)
Get the latitude argument.T
getAlphaDot(PositionAngleType type)
Get the latitude argument derivative.T
getAlphaE()
Get the eccentric latitude argument.T
getAlphaEDot()
Get the eccentric latitude argument derivative.T
getAlphaM()
Get the mean latitude argument.T
getAlphaMDot()
Get the mean latitude argument derivative.T
getAlphaV()
Get the true latitude argument.T
getAlphaVDot()
Get the true latitude argument derivative.PositionAngleType
getCachedPositionAngleType()
Get the cachedPositionAngleType
.T
getCircularEx()
Get the first component of the circular eccentricity vector.T
getCircularExDot()
Get the first component of the circular eccentricity vector derivative.T
getCircularEy()
Get the second component of the circular eccentricity vector.T
getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.T
getE()
Get the eccentricity.T
getEDot()
Get the eccentricity derivative.T
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.T
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.T
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.T
getHx()
Get the first component of the inclination vector.T
getHxDot()
Get the first component of the inclination vector derivative.T
getHy()
Get the second component of the inclination vector.T
getHyDot()
Get the second component of the inclination vector derivative.T
getI()
Get the inclination.T
getIDot()
Get the inclination derivative.T
getLE()
Get the eccentric longitude argument.T
getLEDot()
Get the eccentric longitude argument derivative.T
getLM()
Get the mean longitude argument.T
getLMDot()
Get the mean longitude argument derivative.T
getLv()
Get the true longitude argument.T
getLvDot()
Get the true longitude argument derivative.T
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.T
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.OrbitType
getType()
Get the orbit type.boolean
hasDerivatives()
Check if orbit includes derivatives.boolean
hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.protected FieldVector3D<T>
initPosition()
Compute the position coordinates from the canonical parameters.protected TimeStampedFieldPVCoordinates<T>
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.static <T extends CalculusFieldElement<T>>
TmeanToEccentric(T alphaM, T ex, T ey)
Computes the eccentric latitude argument from the mean latitude argument.FieldCircularOrbit<T>
removeRates()
Create a new instance such thatPositionAngleBased.hasRates()
is false.FieldCircularOrbit<T>
shiftedBy(double dt)
Get a time-shifted instance.FieldCircularOrbit<T>
shiftedBy(T dt)
Get a time-shifted orbit.CircularOrbit
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.String
toString()
Returns a string representation of this Orbit object.static <T extends CalculusFieldElement<T>>
TtrueToEccentric(T alphaV, T ex, T ey)
Computes the eccentric latitude argument from the true latitude argument.-
Methods inherited from class org.orekit.orbits.FieldOrbit
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isElliptical
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.orekit.utils.FieldPVCoordinatesProvider
getPosition
-
Methods inherited from interface org.orekit.time.FieldTimeStamped
durationFrom
-
-
-
-
Constructor Detail
-
FieldCircularOrbit
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)type
- type of latitude argumentframe
- the frame in which are defined the parameters (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, T aDot, T exDot, T eyDot, T iDot, T raanDot, T alphaDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Creates a new instance.- Parameters:
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω))/dt, first component of circular eccentricity vector derivativeeyDot
- d(e sin(ω))/dt, second component of circular eccentricity vector derivativeiDot
- inclination derivative(rad/s)raanDot
- right ascension of ascending node derivative (rad/s)alphaDot
- d(an + ω), mean, eccentric or true latitude argument derivative (rad/s)type
- type of latitude argumentframe
- the frame in which are defined the parameters (must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if eccentricity is equal to 1 or larger or if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
pvCoordinates
- theFieldPVCoordinates
in inertial frameframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
Constructor from Cartesian parameters.The acceleration provided in
FieldPVCoordinates
is accessible usingFieldOrbit.getPVCoordinates()
andFieldOrbit.getPVCoordinates(Frame)
. All other methods usemu
and the position to compute the acceleration, includingshiftedBy(CalculusFieldElement)
andFieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.- Parameters:
PVCoordinates
- theFieldPVCoordinates
in inertial frameframe
- the frame in which are defined theFieldPVCoordinates
(must be apseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)- Throws:
IllegalArgumentException
- if frame is not apseudo-inertial frame
-
FieldCircularOrbit
public FieldCircularOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.- Parameters:
op
- orbital parameters to copy
-
FieldCircularOrbit
public FieldCircularOrbit(Field<T> field, CircularOrbit op)
Constructor from Field and CircularOrbit.Build a FieldCircularOrbit from non-Field CircularOrbit.
- Parameters:
field
- CalculusField to base object onop
- non-field orbit with only "constant" terms- Since:
- 12.0
-
-
Method Detail
-
getType
public OrbitType getType()
Get the orbit type.- Specified by:
getType
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- orbit type
-
getA
public T getA()
Get the semi-major axis.Note that the semi-major axis is considered negative for hyperbolic orbits.
- Specified by:
getA
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis (m)
-
getADot
public T getADot()
Get the semi-major axis derivative.Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
- Specified by:
getADot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- semi-major axis derivative (m/s)
-
getEquinoctialEx
public T getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialExDot
public T getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialExDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the equinoctial eccentricity vector
-
getEquinoctialEy
public T getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.- Specified by:
getEquinoctialEy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getEquinoctialEyDot
public T getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEquinoctialEyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the equinoctial eccentricity vector
-
getCircularEx
public T getCircularEx()
Get the first component of the circular eccentricity vector.- Returns:
- ex = e cos(ω), first component of the circular eccentricity vector
-
getCircularExDot
public T getCircularExDot()
Get the first component of the circular eccentricity vector derivative.- Returns:
- d(ex)/dt = d(e cos(ω))/dt, first component of the circular eccentricity vector derivative
-
getCircularEy
public T getCircularEy()
Get the second component of the circular eccentricity vector.- Returns:
- ey = e sin(ω), second component of the circular eccentricity vector
-
getCircularEyDot
public T getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.- Returns:
- d(ey)/dt = d(e sin(ω))/dt, second component of the circular eccentricity vector derivative
-
getHx
public T getHx()
Get the first component of the inclination vector.- Specified by:
getHx
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector
-
getHxDot
public T getHxDot()
Get the first component of the inclination vector derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getHxDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- first component of the inclination vector derivative
-
getHy
public T getHy()
Get the second component of the inclination vector.- Specified by:
getHy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector
-
getHyDot
public T getHyDot()
Get the second component of the inclination vector derivative.- Specified by:
getHyDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- second component of the inclination vector derivative
-
getAlphaV
public T getAlphaV()
Get the true latitude argument.- Returns:
- v + ω true latitude argument (rad)
-
getAlphaVDot
public T getAlphaVDot()
Get the true latitude argument derivative.- Returns:
- d(v + ω)/dt true latitude argument derivative (rad/s)
-
getAlphaE
public T getAlphaE()
Get the eccentric latitude argument.- Returns:
- E + ω eccentric latitude argument (rad)
-
getAlphaEDot
public T getAlphaEDot()
Get the eccentric latitude argument derivative.- Returns:
- d(E + ω)/dt eccentric latitude argument derivative (rad/s)
-
getAlphaM
public T getAlphaM()
Get the mean latitude argument.- Returns:
- M + ω mean latitude argument (rad)
-
getAlphaMDot
public T getAlphaMDot()
Get the mean latitude argument derivative.- Returns:
- d(M + ω)/dt mean latitude argument derivative (rad/s)
-
getAlpha
public T getAlpha(PositionAngleType type)
Get the latitude argument.- Parameters:
type
- type of the angle- Returns:
- latitude argument (rad)
-
getAlphaDot
public T getAlphaDot(PositionAngleType type)
Get the latitude argument derivative.- Parameters:
type
- type of the angle- Returns:
- latitude argument derivative (rad/s)
-
eccentricToTrue
public static <T extends CalculusFieldElement<T>> T eccentricToTrue(T alphaE, T ex, T ey)
Computes the true latitude argument from the eccentric latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the true latitude argument.
-
trueToEccentric
public static <T extends CalculusFieldElement<T>> T trueToEccentric(T alphaV, T ex, T ey)
Computes the eccentric latitude argument from the true latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaV
- = v + ω true latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the eccentric latitude argument.
-
meanToEccentric
public static <T extends CalculusFieldElement<T>> T meanToEccentric(T alphaM, T ex, T ey)
Computes the eccentric latitude argument from the mean latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaM
- = M + ω mean latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the eccentric latitude argument.
-
eccentricToMean
public static <T extends CalculusFieldElement<T>> T eccentricToMean(T alphaE, T ex, T ey)
Computes the mean latitude argument from the eccentric latitude argument.- Type Parameters:
T
- Type of the field elements- Parameters:
alphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vector- Returns:
- the mean latitude argument.
-
getE
public T getE()
Get the eccentricity.- Specified by:
getE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity
-
getEDot
public T getEDot()
Get the eccentricity derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- eccentricity derivative
-
getI
public T getI()
Get the inclination.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getI
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination (rad)
-
getIDot
public T getIDot()
Get the inclination derivative.- Specified by:
getIDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- inclination derivative (rad/s)
-
getRightAscensionOfAscendingNode
public T getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.- Returns:
- right ascension of the ascending node (rad)
-
getRightAscensionOfAscendingNodeDot
public T getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.- Returns:
- right ascension of the ascending node derivative (rad/s)
-
getLv
public T getLv()
Get the true longitude argument.- Specified by:
getLv
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- v + ω + Ω true longitude argument (rad)
-
getLvDot
public T getLvDot()
Get the true longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLvDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
-
getLE
public T getLE()
Get the eccentric longitude argument.- Specified by:
getLE
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- E + ω + Ω eccentric longitude argument (rad)
-
getLEDot
public T getLEDot()
Get the eccentric longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLEDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
-
getLM
public T getLM()
Get the mean longitude argument.- Specified by:
getLM
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- M + ω + Ω mean longitude argument (rad)
-
getLMDot
public T getLMDot()
Get the mean longitude argument derivative.If the orbit was created without derivatives, the value returned is null.
- Specified by:
getLMDot
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
-
hasDerivatives
public boolean hasDerivatives()
Check if orbit includes derivatives.- Specified by:
hasDerivatives
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- true if orbit includes derivatives
- See Also:
FieldOrbit.getADot()
,FieldOrbit.getEquinoctialExDot()
,FieldOrbit.getEquinoctialEyDot()
,FieldOrbit.getHxDot()
,FieldOrbit.getHyDot()
,FieldOrbit.getLEDot()
,FieldOrbit.getLvDot()
,FieldOrbit.getLMDot()
,FieldOrbit.getEDot()
,FieldOrbit.getIDot()
-
initPosition
protected FieldVector3D<T> initPosition()
Compute the position coordinates from the canonical parameters.- Specified by:
initPosition
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position coordinates
-
initPVCoordinates
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.- Specified by:
initPVCoordinates
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- computed position/velocity coordinates
-
shiftedBy
public FieldCircularOrbit<T> shiftedBy(double dt)
Get a time-shifted instance.- Specified by:
shiftedBy
in interfaceTimeShiftable<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new instance, shifted with respect to instance (which is not changed)
-
shiftedBy
public FieldCircularOrbit<T> shiftedBy(T dt)
Get a time-shifted orbit.The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
- Specified by:
shiftedBy
in interfaceFieldTimeShiftable<FieldOrbit<T extends CalculusFieldElement<T>>,T extends CalculusFieldElement<T>>
- Specified by:
shiftedBy
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
dt
- time shift in seconds- Returns:
- a new orbit, shifted with respect to the instance (which is immutable)
-
computeJacobianMeanWrtCartesian
protected T[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianMeanWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianEccentricWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianEccentricWrtCartesian
protected T[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianEccentricWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianTrueWrtCartesian()
-
computeJacobianTrueWrtCartesian
protected T[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.Element
jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.- Specified by:
computeJacobianTrueWrtCartesian
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- 6x6 Jacobian matrix
- See Also:
FieldOrbit.computeJacobianMeanWrtCartesian()
,FieldOrbit.computeJacobianEccentricWrtCartesian()
-
addKeplerContribution
public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
Add the contribution of the Keplerian motion to parameters derivativesThis method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
- Specified by:
addKeplerContribution
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Parameters:
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)
-
toString
public String toString()
Returns a string representation of this Orbit object.
-
getCachedPositionAngleType
public PositionAngleType getCachedPositionAngleType()
Get the cachedPositionAngleType
.- Specified by:
getCachedPositionAngleType
in interfacePositionAngleBased
- Returns:
- cached type of position angle
-
hasRates
public boolean hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.- Specified by:
hasRates
in interfacePositionAngleBased
- Returns:
- true if and only if holding rates
-
removeRates
public FieldCircularOrbit<T> removeRates()
Create a new instance such thatPositionAngleBased.hasRates()
is false.- Specified by:
removeRates
in interfacePositionAngleBased
- Returns:
- new object without rates
-
toOrbit
public CircularOrbit toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.- Specified by:
toOrbit
in classFieldOrbit<T extends CalculusFieldElement<T>>
- Returns:
- Orbit instance with same properties
-
-