T
- type of the field elementspublic class FieldCircularOrbit<T extends org.hipparchus.CalculusFieldElement<T>> extends FieldOrbit<T> implements PositionAngleBased
The parameters used internally are the circular elements which can be related to Keplerian elements as follows:
The conversion equations from and to Keplerian elements given above hold only
when both sides are unambiguously defined, i.e. when orbit is neither equatorial
nor circular. When orbit is circular (but not equatorial), the circular
parameters are still unambiguously defined whereas some Keplerian elements
(more precisely ω and Ω) become ambiguous. When orbit is equatorial,
neither the Keplerian nor the circular parameters can be defined unambiguously.
equinoctial orbits
is the recommended way to represent
orbits.
The instance CircularOrbit
is guaranteed to be immutable.
Orbit
,
KeplerianOrbit
,
CartesianOrbit
,
EquinoctialOrbit
Constructor and Description |
---|
FieldCircularOrbit(org.hipparchus.Field<T> field,
CircularOrbit op)
Constructor from Field and CircularOrbit.
|
FieldCircularOrbit(org.hipparchus.Field<T> field,
Orbit op)
Constructor from Field and Orbit.
|
FieldCircularOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.
|
FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Constructor from Cartesian parameters.
|
FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates,
Frame frame,
T mu)
Constructor from Cartesian parameters.
|
FieldCircularOrbit(T a,
T ex,
T ey,
T i,
T raan,
T alpha,
PositionAngleType type,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Creates a new instance.
|
FieldCircularOrbit(T a,
T ex,
T ey,
T i,
T raan,
T alpha,
T aDot,
T exDot,
T eyDot,
T iDot,
T raanDot,
T alphaDot,
PositionAngleType type,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Creates a new instance.
|
Modifier and Type | Method and Description |
---|---|
void |
addKeplerContribution(PositionAngleType type,
T gm,
T[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
|
protected T[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
static <T extends org.hipparchus.CalculusFieldElement<T>> |
eccentricToMean(T alphaE,
T ex,
T ey)
Computes the mean latitude argument from the eccentric latitude argument.
|
static <T extends org.hipparchus.CalculusFieldElement<T>> |
eccentricToTrue(T alphaE,
T ex,
T ey)
Computes the true latitude argument from the eccentric latitude argument.
|
T |
getA()
Get the semi-major axis.
|
T |
getADot()
Get the semi-major axis derivative.
|
T |
getAlpha(PositionAngleType type)
Get the latitude argument.
|
T |
getAlphaDot(PositionAngleType type)
Get the latitude argument derivative.
|
T |
getAlphaE()
Get the eccentric latitude argument.
|
T |
getAlphaEDot()
Get the eccentric latitude argument derivative.
|
T |
getAlphaM()
Get the mean latitude argument.
|
T |
getAlphaMDot()
Get the mean latitude argument derivative.
|
T |
getAlphaV()
Get the true latitude argument.
|
T |
getAlphaVDot()
Get the true latitude argument derivative.
|
PositionAngleType |
getCachedPositionAngleType()
Get the cached
PositionAngleType . |
T |
getCircularEx()
Get the first component of the circular eccentricity vector.
|
T |
getCircularExDot()
Get the first component of the circular eccentricity vector derivative.
|
T |
getCircularEy()
Get the second component of the circular eccentricity vector.
|
T |
getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.
|
T |
getE()
Get the eccentricity.
|
T |
getEDot()
Get the eccentricity derivative.
|
T |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.
|
T |
getHx()
Get the first component of the inclination vector.
|
T |
getHxDot()
Get the first component of the inclination vector derivative.
|
T |
getHy()
Get the second component of the inclination vector.
|
T |
getHyDot()
Get the second component of the inclination vector derivative.
|
T |
getI()
Get the inclination.
|
T |
getIDot()
Get the inclination derivative.
|
T |
getLE()
Get the eccentric longitude argument.
|
T |
getLEDot()
Get the eccentric longitude argument derivative.
|
T |
getLM()
Get the mean longitude argument.
|
T |
getLMDot()
Get the mean longitude argument derivative.
|
T |
getLv()
Get the true longitude argument.
|
T |
getLvDot()
Get the true longitude argument derivative.
|
T |
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.
|
T |
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.
|
OrbitType |
getType()
Get the orbit type.
|
boolean |
hasDerivatives()
Check if orbit includes derivatives.
|
boolean |
hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.
|
protected org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> |
initPosition()
Compute the position coordinates from the canonical parameters.
|
protected TimeStampedFieldPVCoordinates<T> |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
static <T extends org.hipparchus.CalculusFieldElement<T>> |
meanToEccentric(T alphaM,
T ex,
T ey)
Computes the eccentric latitude argument from the mean latitude argument.
|
FieldCircularOrbit<T> |
removeRates()
Create a new instance such that
PositionAngleBased.hasRates() is false. |
FieldCircularOrbit<T> |
shiftedBy(double dt)
Get a time-shifted instance.
|
FieldCircularOrbit<T> |
shiftedBy(T dt)
Get a time-shifted orbit.
|
CircularOrbit |
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.
|
String |
toString()
Returns a string representation of this Orbit object.
|
static <T extends org.hipparchus.CalculusFieldElement<T>> |
trueToEccentric(T alphaV,
T ex,
T ey)
Computes the eccentric latitude argument from the true latitude argument.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isElliptical
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getPosition
durationFrom
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)type
- type of latitude argumentframe
- the frame in which are defined the parameters
(must be a pseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if eccentricity is equal to 1 or larger or
if frame is not a pseudo-inertial frame
public FieldCircularOrbit(T a, T ex, T ey, T i, T raan, T alpha, T aDot, T exDot, T eyDot, T iDot, T raanDot, T alphaDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
a
- semi-major axis (m)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectori
- inclination (rad)raan
- right ascension of ascending node (Ω, rad)alpha
- an + ω, mean, eccentric or true latitude argument (rad)aDot
- semi-major axis derivative (m/s)exDot
- d(e cos(ω))/dt, first component of circular eccentricity vector derivativeeyDot
- d(e sin(ω))/dt, second component of circular eccentricity vector derivativeiDot
- inclination derivative(rad/s)raanDot
- right ascension of ascending node derivative (rad/s)alphaDot
- d(an + ω), mean, eccentric or true latitude argument derivative (rad/s)type
- type of latitude argumentframe
- the frame in which are defined the parameters
(must be a pseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if eccentricity is equal to 1 or larger or
if frame is not a pseudo-inertial frame
public FieldCircularOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates
is accessible using
FieldOrbit.getPVCoordinates()
and FieldOrbit.getPVCoordinates(Frame)
. All other methods
use mu
and the position to compute the acceleration, including
shiftedBy(CalculusFieldElement)
and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.
pvCoordinates
- the FieldPVCoordinates
in inertial frameframe
- the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame
)mu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if frame is not a pseudo-inertial frame
public FieldCircularOrbit(FieldPVCoordinates<T> PVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates
is accessible using
FieldOrbit.getPVCoordinates()
and FieldOrbit.getPVCoordinates(Frame)
. All other methods
use mu
and the position to compute the acceleration, including
shiftedBy(CalculusFieldElement)
and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame)
.
PVCoordinates
- the FieldPVCoordinates
in inertial frameframe
- the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame
)date
- date of the orbital parametersmu
- central attraction coefficient (m³/s²)IllegalArgumentException
- if frame is not a pseudo-inertial frame
public FieldCircularOrbit(FieldOrbit<T> op)
op
- orbital parameters to copypublic FieldCircularOrbit(org.hipparchus.Field<T> field, CircularOrbit op)
Build a FieldCircularOrbit from non-Field CircularOrbit.
field
- CalculusField to base object onop
- non-field orbit with only "constant" termspublic OrbitType getType()
getType
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
getA
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getADot()
Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
getADot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getEquinoctialEx()
getEquinoctialEx
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getEquinoctialExDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialExDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getEquinoctialEy()
getEquinoctialEy
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getEquinoctialEyDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialEyDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getCircularEx()
public T getCircularExDot()
public T getCircularEy()
public T getCircularEyDot()
public T getHx()
getHx
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getHxDot()
If the orbit was created without derivatives, the value returned is null.
getHxDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getHy()
getHy
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getHyDot()
getHyDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getAlphaV()
public T getAlphaVDot()
public T getAlphaE()
public T getAlphaEDot()
public T getAlphaM()
public T getAlphaMDot()
public T getAlpha(PositionAngleType type)
type
- type of the anglepublic T getAlphaDot(PositionAngleType type)
type
- type of the anglepublic static <T extends org.hipparchus.CalculusFieldElement<T>> T eccentricToTrue(T alphaE, T ex, T ey)
T
- Type of the field elementsalphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectorpublic static <T extends org.hipparchus.CalculusFieldElement<T>> T trueToEccentric(T alphaV, T ex, T ey)
T
- Type of the field elementsalphaV
- = v + ω true latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectorpublic static <T extends org.hipparchus.CalculusFieldElement<T>> T meanToEccentric(T alphaM, T ex, T ey)
T
- Type of the field elementsalphaM
- = M + ω mean latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectorpublic static <T extends org.hipparchus.CalculusFieldElement<T>> T eccentricToMean(T alphaE, T ex, T ey)
T
- Type of the field elementsalphaE
- = E + ω eccentric latitude argument (rad)ex
- e cos(ω), first component of circular eccentricity vectorey
- e sin(ω), second component of circular eccentricity vectorpublic T getE()
getE
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getEDot()
If the orbit was created without derivatives, the value returned is null.
getEDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getI()
If the orbit was created without derivatives, the value returned is null.
getI
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getIDot()
getIDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getRightAscensionOfAscendingNode()
public T getRightAscensionOfAscendingNodeDot()
public T getLv()
getLv
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getLvDot()
If the orbit was created without derivatives, the value returned is null.
getLvDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getLE()
getLE
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getLEDot()
If the orbit was created without derivatives, the value returned is null.
getLEDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getLM()
getLM
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public T getLMDot()
If the orbit was created without derivatives, the value returned is null.
getLMDot
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public boolean hasDerivatives()
hasDerivatives
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
FieldOrbit.getADot()
,
FieldOrbit.getEquinoctialExDot()
,
FieldOrbit.getEquinoctialEyDot()
,
FieldOrbit.getHxDot()
,
FieldOrbit.getHyDot()
,
FieldOrbit.getLEDot()
,
FieldOrbit.getLvDot()
,
FieldOrbit.getLMDot()
,
FieldOrbit.getEDot()
,
FieldOrbit.getIDot()
protected org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> initPosition()
initPosition
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
initPVCoordinates
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
public FieldCircularOrbit<T> shiftedBy(double dt)
shiftedBy
in interface TimeShiftable<FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>>
dt
- time shift in secondspublic FieldCircularOrbit<T> shiftedBy(T dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy
in interface FieldTimeShiftable<FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>,T extends org.hipparchus.CalculusFieldElement<T>>
shiftedBy
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
dt
- time shift in secondsprotected T[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
FieldOrbit.computeJacobianEccentricWrtCartesian()
,
FieldOrbit.computeJacobianTrueWrtCartesian()
protected T[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
FieldOrbit.computeJacobianMeanWrtCartesian()
,
FieldOrbit.computeJacobianTrueWrtCartesian()
protected T[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
FieldOrbit.computeJacobianMeanWrtCartesian()
,
FieldOrbit.computeJacobianEccentricWrtCartesian()
public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)public String toString()
public PositionAngleType getCachedPositionAngleType()
PositionAngleType
.getCachedPositionAngleType
in interface PositionAngleBased
public boolean hasRates()
hasRates
in interface PositionAngleBased
public FieldCircularOrbit<T> removeRates()
PositionAngleBased.hasRates()
is false.removeRates
in interface PositionAngleBased
public CircularOrbit toOrbit()
toOrbit
in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>
Copyright © 2002-2023 CS GROUP. All rights reserved.