1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.forces;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.util.FastMath;
21  import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
22  import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
23  
24  /**
25   * This class is a container for the common "field" parameters used in {@link DSSTZonal}.
26   * <p>
27   * It performs parameters initialization at each integration step for the Zonal contribution
28   * to the central body gravitational perturbation.
29   * <p>
30   * @author Bryan Cazabonne
31   * @since 10.0
32   */
33  public class FieldDSSTZonalContext<T extends CalculusFieldElement<T>> extends FieldForceModelContext<T> {
34  
35      // Common factors for potential computation
36      /** A = sqrt(μ * a). */
37      private final T A;
38      /** &Chi; = 1 / sqrt(1 - e²) = 1 / B. */
39      private T X;
40      /** &Chi;². */
41      private T XX;
42      /** &Chi;³. */
43      private T XXX;
44      /** 1 / (A * B) . */
45      private T ooAB;
46      /** B / A . */
47      private T BoA;
48      /** B / A(1 + B) . */
49      private T BoABpo;
50      /** -C / (2 * A * B) . */
51      private T mCo2AB;
52      /** -2 * a / A . */
53      private T m2aoA;
54      /** μ / a . */
55      private T muoa;
56      /** R / a . */
57      private T roa;
58  
59      /** Keplerian mean motion. */
60      private final T n;
61  
62      // Short period terms
63      /** h * k. */
64      private T hk;
65      /** k² - h². */
66      private T k2mh2;
67      /** (k² - h²) / 2. */
68      private T k2mh2o2;
69      /** 1 / (n² * a²). */
70      private T oon2a2;
71      /** 1 / (n² * a) . */
72      private T oon2a;
73      /** χ³ / (n² * a). */
74      private T x3on2a;
75      /** χ / (n² * a²). */
76      private T xon2a2;
77      /** (C * χ) / ( 2 * n² * a² ). */
78      private T cxo2n2a2;
79      /** (χ²) / (n² * a² * (χ + 1 ) ). */
80      private T x2on2a2xp1;
81      /** B * B. */
82      private T BB;
83  
84      /**
85       * Simple constructor.
86       *
87       * @param auxiliaryElements auxiliary elements related to the current orbit
88       * @param provider          provider for spherical harmonics
89       * @param parameters        values of the force model parameters
90       */
91      FieldDSSTZonalContext(final FieldAuxiliaryElements<T> auxiliaryElements,
92                                   final UnnormalizedSphericalHarmonicsProvider provider,
93                                   final T[] parameters) {
94  
95          super(auxiliaryElements);
96  
97          final T mu = parameters[0];
98  
99          // Keplerian mean motion
100         final T absA = FastMath.abs(auxiliaryElements.getSma());
101         n = FastMath.sqrt(mu.divide(absA)).divide(absA);
102 
103         A = FastMath.sqrt(mu.multiply(auxiliaryElements.getSma()));
104 
105         // &Chi; = 1 / B
106         X = auxiliaryElements.getB().reciprocal();
107         XX = X.multiply(X);
108         XXX = X.multiply(XX);
109 
110         // 1 / AB
111         ooAB = (A.multiply(auxiliaryElements.getB())).reciprocal();
112         // B / A
113         BoA = auxiliaryElements.getB().divide(A);
114         // -C / 2AB
115         mCo2AB = auxiliaryElements.getC().multiply(ooAB).divide(2.).negate();
116         // B / A(1 + B)
117         BoABpo = BoA.divide(auxiliaryElements.getB().add(1.));
118         // -2 * a / A
119         m2aoA = auxiliaryElements.getSma().divide(A).multiply(2.).negate();
120         // μ / a
121         muoa = mu.divide(auxiliaryElements.getSma());
122         // R / a
123         roa = auxiliaryElements.getSma().divide(provider.getAe()).reciprocal();
124 
125         // Short period terms
126 
127         // h * k.
128         hk = auxiliaryElements.getH().multiply(auxiliaryElements.getK());
129         // k² - h².
130         k2mh2 = auxiliaryElements.getK().multiply(auxiliaryElements.getK()).subtract(auxiliaryElements.getH().multiply(auxiliaryElements.getH()));
131         // (k² - h²) / 2.
132         k2mh2o2 = k2mh2.divide(2.);
133         // 1 / (n² * a²) = 1 / (n * A)
134         oon2a2 = (A.multiply(n)).reciprocal();
135         // 1 / (n² * a) = a / (n * A)
136         oon2a = auxiliaryElements.getSma().multiply(oon2a2);
137         // χ³ / (n² * a)
138         x3on2a = XXX.multiply(oon2a);
139         // χ / (n² * a²)
140         xon2a2 = X.multiply(oon2a2);
141         // (C * χ) / ( 2 * n² * a² )
142         cxo2n2a2 = xon2a2.multiply(auxiliaryElements.getC()).divide(2.);
143         // (χ²) / (n² * a² * (χ + 1 ) )
144         x2on2a2xp1 = xon2a2.multiply(X).divide(X.add(1.));
145         // B * B
146         BB = auxiliaryElements.getB().multiply(auxiliaryElements.getB());
147 
148     }
149 
150     /** Get &Chi; = 1 / sqrt(1 - e²) = 1 / B.
151      * @return &Chi;
152      */
153     public T getX() {
154         return X;
155     }
156 
157     /** Get &Chi;².
158      * @return &Chi;².
159      */
160     public T getXX() {
161         return XX;
162     }
163 
164     /** Get &Chi;³.
165      * @return &Chi;³
166      */
167     public T getXXX() {
168         return XXX;
169     }
170 
171     /** Get m2aoA = -2 * a / A.
172      * @return m2aoA
173      */
174     public T getM2aoA() {
175         return m2aoA;
176     }
177 
178     /** Get B / A.
179      * @return BoA
180      */
181     public T getBoA() {
182         return BoA;
183     }
184 
185     /** Get ooAB = 1 / (A * B).
186      * @return ooAB
187      */
188     public T getOoAB() {
189         return ooAB;
190     }
191 
192     /** Get mCo2AB = -C / 2AB.
193      * @return mCo2AB
194      */
195     public T getMCo2AB() {
196         return mCo2AB;
197     }
198 
199     /** Get BoABpo = B / A(1 + B).
200      * @return BoABpo
201      */
202     public T getBoABpo() {
203         return BoABpo;
204     }
205 
206     /** Get μ / a .
207      * @return muoa
208      */
209     public T getMuoa() {
210         return muoa;
211     }
212 
213     /** Get roa = R / a.
214      * @return roa
215      */
216     public T getRoa() {
217         return roa;
218     }
219 
220     /** Get the Keplerian mean motion.
221      * <p>The Keplerian mean motion is computed directly from semi major axis
222      * and central acceleration constant.</p>
223      * @return Keplerian mean motion in radians per second
224      */
225     public T getMeanMotion() {
226         return n;
227     }
228 
229     /** Get h * k.
230      * @return hk
231      */
232     public T getHK() {
233         return hk;
234     }
235 
236     /** Get k² - h².
237      * @return k2mh2
238      */
239     public T getK2MH2() {
240         return k2mh2;
241     }
242 
243     /** Get (k² - h²) / 2.
244      * @return k2mh2o2
245      */
246     public T getK2MH2O2() {
247         return k2mh2o2;
248     }
249 
250     /** Get 1 / (n² * a²).
251      * @return oon2a2
252      */
253     public T getOON2A2() {
254         return oon2a2;
255     }
256 
257     /** Get χ³ / (n² * a).
258      * @return x3on2a
259      */
260     public T getX3ON2A() {
261         return x3on2a;
262     }
263 
264     /** Get χ / (n² * a²).
265      * @return xon2a2
266      */
267     public T getXON2A2() {
268         return xon2a2;
269     }
270 
271     /** Get (C * χ) / ( 2 * n² * a² ).
272      * @return cxo2n2a2
273      */
274     public T getCXO2N2A2() {
275         return cxo2n2a2;
276     }
277 
278     /** Get (χ²) / (n² * a² * (χ + 1 ) ).
279      * @return x2on2a2xp1
280      */
281     public T getX2ON2A2XP1() {
282         return x2on2a2xp1;
283     }
284 
285     /** Get B * B.
286      * @return BB
287      */
288     public T getBB() {
289         return BB;
290     }
291 
292 }