1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.forces;
18  
19  import org.hipparchus.geometry.euclidean.threed.Vector3D;
20  import org.hipparchus.util.FastMath;
21  import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
22  import org.orekit.frames.Frame;
23  import org.orekit.frames.Transform;
24  import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
25  
26  /**
27   * This class is a container for the common parameters used in {@link DSSTTesseral}.
28   * <p>
29   * It performs parameters initialization at each integration step for the Tesseral contribution
30   * to the central body gravitational perturbation.
31   * <p>
32   * @author Bryan Cazabonne
33   * @since 10.0
34   */
35  public class DSSTTesseralContext extends ForceModelContext {
36  
37      /** Retrograde factor I.
38       * <p>
39       *  DSST model needs equinoctial orbit as internal representation.
40       *  Classical equinoctial elements have discontinuities when inclination
41       *  is close to zero. In this representation, I = +1. <br>
42       * To avoid this discontinuity, another representation exists and equinoctial
43       *  elements can be expressed in a different way, called "retrograde" orbit.
44       *  This implies I = -1. <br>
45       *  As Orekit doesn't implement the retrograde orbit, I is always set to +1.
46       *  But for the sake of consistency with the theory, the retrograde factor
47       *  has been kept in the formulas.
48       * </p>
49       */
50      private static final int I = 1;
51  
52      /** A = sqrt(μ * a). */
53      private double A;
54  
55      // Common factors for potential computation
56      /** &Chi; = 1 / sqrt(1 - e²) = 1 / B. */
57      private double chi;
58  
59      /** &Chi;². */
60      private double chi2;
61  
62      /** Central body rotation angle θ. */
63      private double theta;
64  
65      // Common factors from equinoctial coefficients
66      /** 2 * a / A . */
67      private double ax2oA;
68  
69      /** 1 / (A * B) . */
70      private double ooAB;
71  
72      /** B / A . */
73      private double BoA;
74  
75      /** B / (A * (1 + B)) . */
76      private double BoABpo;
77  
78      /** C / (2 * A * B) . */
79      private double Co2AB;
80  
81      /** μ / a . */
82      private double moa;
83  
84      /** R / a . */
85      private double roa;
86  
87      /** ecc². */
88      private double e2;
89  
90      /** Keplerian mean motion. */
91      private double n;
92  
93      /** Keplerian period. */
94      private double period;
95  
96      /** Ratio of satellite period to central body rotation period. */
97      private double ratio;
98  
99      /**
100      * Simple constructor.
101      *
102      * @param auxiliaryElements auxiliary elements related to the current orbit
103      * @param centralBodyFrame           rotating body frame
104      * @param provider                   provider for spherical harmonics
105      * @param maxFrequencyShortPeriodics maximum value for j
106      * @param bodyPeriod                 central body rotation period (seconds)
107      * @param parameters                 values of the force model parameters
108      */
109     DSSTTesseralContext(final AuxiliaryElements auxiliaryElements,
110                         final Frame centralBodyFrame,
111                         final UnnormalizedSphericalHarmonicsProvider provider,
112                         final int maxFrequencyShortPeriodics,
113                         final double bodyPeriod,
114                         final double[] parameters) {
115 
116         super(auxiliaryElements);
117 
118         final double mu = parameters[0];
119 
120         // Keplerian Mean Motion
121         final double absA = FastMath.abs(auxiliaryElements.getSma());
122         n = FastMath.sqrt(mu / absA) / absA;
123 
124         // Keplerian period
125         final double a = auxiliaryElements.getSma();
126         period = (a < 0) ? Double.POSITIVE_INFINITY : 2.0 * FastMath.PI * a * FastMath.sqrt(a / mu);
127 
128         A = FastMath.sqrt(mu * auxiliaryElements.getSma());
129 
130         // Eccentricity square
131         e2 = auxiliaryElements.getEcc() * auxiliaryElements.getEcc();
132 
133         // Central body rotation angle from equation 2.7.1-(3)(4).
134         final Transform t = centralBodyFrame.getTransformTo(auxiliaryElements.getFrame(), auxiliaryElements.getDate());
135         final Vector3D xB = t.transformVector(Vector3D.PLUS_I);
136         final Vector3D yB = t.transformVector(Vector3D.PLUS_J);
137         theta = FastMath.atan2(-auxiliaryElements.getVectorF().dotProduct(yB) + I * auxiliaryElements.getVectorG().dotProduct(xB),
138                 auxiliaryElements.getVectorF().dotProduct(xB) + I * auxiliaryElements.getVectorG().dotProduct(yB));
139 
140         // Common factors from equinoctial coefficients
141         // 2 * a / A
142         ax2oA = 2. * auxiliaryElements.getSma() / A;
143         // B / A
144         BoA = auxiliaryElements.getB() / A;
145         // 1 / AB
146         ooAB = 1. / (A * auxiliaryElements.getB());
147         // C / 2AB
148         Co2AB = auxiliaryElements.getC() * ooAB / 2.;
149         // B / (A * (1 + B))
150         BoABpo = BoA / (1. + auxiliaryElements.getB());
151         // &mu / a
152         moa = mu / auxiliaryElements.getSma();
153         // R / a
154         roa = provider.getAe() / auxiliaryElements.getSma();
155 
156         // &Chi; = 1 / B
157         chi = 1. / auxiliaryElements.getB();
158         chi2 = chi * chi;
159 
160         // Ratio of satellite to central body periods to define resonant terms
161         ratio = period / bodyPeriod;
162 
163     }
164 
165     /** Get ecc².
166      * @return e2
167      */
168     public double getE2() {
169         return e2;
170     }
171 
172     /**
173      * Get Central body rotation angle θ.
174      * @return theta
175      */
176     public double getTheta() {
177         return theta;
178     }
179 
180     /**
181      * Get ax2oA = 2 * a / A .
182      * @return ax2oA
183      */
184     public double getAx2oA() {
185         return ax2oA;
186     }
187 
188     /**
189      * Get &Chi; = 1 / sqrt(1 - e²) = 1 / B.
190      * @return chi
191      */
192     public double getChi() {
193         return chi;
194     }
195 
196     /**
197      * Get &Chi;².
198      * @return chi2
199      */
200     public double getChi2() {
201         return chi2;
202     }
203 
204     /**
205      * Get B / A.
206      * @return BoA
207      */
208     public double getBoA() {
209         return BoA;
210     }
211 
212     /**
213      * Get ooAB = 1 / (A * B).
214      * @return ooAB
215      */
216     public double getOoAB() {
217         return ooAB;
218     }
219 
220     /**
221      * Get Co2AB = C / 2AB.
222      * @return Co2AB
223      */
224     public double getCo2AB() {
225         return Co2AB;
226     }
227 
228     /**
229      * Get BoABpo = B / A(1 + B).
230      * @return BoABpo
231      */
232     public double getBoABpo() {
233         return BoABpo;
234     }
235 
236     /**
237      * Get μ / a .
238      * @return moa
239      */
240     public double getMoa() {
241         return moa;
242     }
243 
244     /**
245      * Get roa = R / a.
246      * @return roa
247      */
248     public double getRoa() {
249         return roa;
250     }
251 
252     /**
253      * Get the Keplerian period.
254      * <p>
255      * The Keplerian period is computed directly from semi major axis and central
256      * acceleration constant.
257      * </p>
258      * @return Keplerian period in seconds, or positive infinity for hyperbolic
259      *         orbits
260      */
261     public double getOrbitPeriod() {
262         return period;
263     }
264 
265     /**
266      * Get the Keplerian mean motion.
267      * <p>
268      * The Keplerian mean motion is computed directly from semi major axis and
269      * central acceleration constant.
270      * </p>
271      * @return Keplerian mean motion in radians per second
272      */
273     public double getMeanMotion() {
274         return n;
275     }
276 
277     /**
278      * Get the ratio of satellite period to central body rotation period.
279      * @return ratio
280      */
281     public double getRatio() {
282         return ratio;
283     }
284 
285 }