1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst;
18  
19  import java.util.ArrayList;
20  import java.util.Arrays;
21  import java.util.Collection;
22  import java.util.Collections;
23  import java.util.HashMap;
24  import java.util.HashSet;
25  import java.util.List;
26  import java.util.Map;
27  import java.util.Set;
28  
29  import org.hipparchus.Field;
30  import org.hipparchus.CalculusFieldElement;
31  import org.hipparchus.ode.FieldODEIntegrator;
32  import org.hipparchus.ode.FieldODEStateAndDerivative;
33  import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
34  import org.hipparchus.ode.sampling.FieldODEStepHandler;
35  import org.hipparchus.util.FastMath;
36  import org.hipparchus.util.MathArrays;
37  import org.hipparchus.util.MathUtils;
38  import org.orekit.annotation.DefaultDataContext;
39  import org.orekit.attitudes.AttitudeProvider;
40  import org.orekit.attitudes.FieldAttitude;
41  import org.orekit.data.DataContext;
42  import org.orekit.errors.OrekitException;
43  import org.orekit.errors.OrekitInternalError;
44  import org.orekit.errors.OrekitMessages;
45  import org.orekit.frames.Frame;
46  import org.orekit.orbits.FieldEquinoctialOrbit;
47  import org.orekit.orbits.FieldOrbit;
48  import org.orekit.orbits.OrbitType;
49  import org.orekit.orbits.PositionAngle;
50  import org.orekit.propagation.FieldSpacecraftState;
51  import org.orekit.propagation.PropagationType;
52  import org.orekit.propagation.Propagator;
53  import org.orekit.propagation.SpacecraftState;
54  import org.orekit.propagation.events.FieldEventDetector;
55  import org.orekit.propagation.integration.FieldAbstractIntegratedPropagator;
56  import org.orekit.propagation.integration.FieldStateMapper;
57  import org.orekit.propagation.numerical.FieldNumericalPropagator;
58  import org.orekit.propagation.semianalytical.dsst.forces.DSSTForceModel;
59  import org.orekit.propagation.semianalytical.dsst.forces.DSSTNewtonianAttraction;
60  import org.orekit.propagation.semianalytical.dsst.forces.FieldShortPeriodTerms;
61  import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
62  import org.orekit.propagation.semianalytical.dsst.utilities.FieldFixedNumberInterpolationGrid;
63  import org.orekit.propagation.semianalytical.dsst.utilities.FieldInterpolationGrid;
64  import org.orekit.propagation.semianalytical.dsst.utilities.FieldMaxGapInterpolationGrid;
65  import org.orekit.time.AbsoluteDate;
66  import org.orekit.time.FieldAbsoluteDate;
67  import org.orekit.utils.ParameterDriver;
68  import org.orekit.utils.ParameterObserver;
69  
70  /**
71   * This class propagates {@link org.orekit.orbits.FieldOrbit orbits} using the DSST theory.
72   * <p>
73   * Whereas analytical propagators are configured only thanks to their various
74   * constructors and can be used immediately after construction, such a semianalytical
75   * propagator configuration involves setting several parameters between construction
76   * time and propagation time, just as numerical propagators.
77   * </p>
78   * <p>
79   * The configuration parameters that can be set are:
80   * </p>
81   * <ul>
82   * <li>the initial spacecraft state ({@link #setInitialState(FieldSpacecraftState)})</li>
83   * <li>the various force models ({@link #addForceModel(DSSTForceModel)},
84   * {@link #removeForceModels()})</li>
85   * <li>the discrete events that should be triggered during propagation (
86   * {@link #addEventDetector(org.orekit.propagation.events.FieldEventDetector)},
87   * {@link #clearEventsDetectors()})</li>
88   * <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
89   * </ul>
90   * <p>
91   * From these configuration parameters, only the initial state is mandatory.
92   * The default propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial}
93   * parameters with {@link PositionAngle#TRUE true} longitude argument.
94   * The central attraction coefficient used to define the initial orbit will be used.
95   * However, specifying only the initial state would mean the propagator would use
96   * only Keplerian forces. In this case, the simpler
97   * {@link org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator}
98   * class would be more effective.
99   * </p>
100  * <p>
101  * The underlying numerical integrator set up in the constructor may also have
102  * its own configuration parameters. Typical configuration parameters for adaptive
103  * stepsize integrators are the min, max and perhaps start step size as well as
104  * the absolute and/or relative errors thresholds.
105  * </p>
106  * <p>
107  * The state that is seen by the integrator is a simple six elements double array.
108  * These six elements are:
109  * <ul>
110  * <li>the {@link org.orekit.orbits.FieldEquinoctialOrbit equinoctial orbit parameters}
111  * (a, e<sub>x</sub>, e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>m</sub>)
112  * in meters and radians,</li>
113  * </ul>
114  *
115  * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
116  * thus allowing a new propagation to be started from there without recomputing the part already performed.
117  * This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
118  * </p>
119  * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
120  * thread-safe.</p>
121  *
122  * @see FieldSpacecraftState
123  * @see DSSTForceModel
124  * @author Romain Di Costanzo
125  * @author Pascal Parraud
126  * @since 10.0
127  */
128 public class FieldDSSTPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractIntegratedPropagator<T>  {
129 
130     /** Retrograde factor I.
131      *  <p>
132      *  DSST model needs equinoctial orbit as internal representation.
133      *  Classical equinoctial elements have discontinuities when inclination
134      *  is close to zero. In this representation, I = +1. <br>
135      *  To avoid this discontinuity, another representation exists and equinoctial
136      *  elements can be expressed in a different way, called "retrograde" orbit.
137      *  This implies I = -1. <br>
138      *  As Orekit doesn't implement the retrograde orbit, I is always set to +1.
139      *  But for the sake of consistency with the theory, the retrograde factor
140      *  has been kept in the formulas.
141      *  </p>
142      */
143     private static final int I = 1;
144 
145     /** Number of grid points per integration step to be used in interpolation of short periodics coefficients.*/
146     private static final int INTERPOLATION_POINTS_PER_STEP = 3;
147 
148     /** Default value for epsilon. */
149     private static final double EPSILON_DEFAULT = 1.0e-13;
150 
151     /** Default value for maxIterations. */
152     private static final int MAX_ITERATIONS_DEFAULT = 200;
153 
154     /** Flag specifying whether the initial orbital state is given with osculating elements. */
155     private boolean initialIsOsculating;
156 
157     /** Field used by this class.*/
158     private final Field<T> field;
159 
160     /** Force models used to compute short periodic terms. */
161     private final transient List<DSSTForceModel> forceModels;
162 
163     /** State mapper holding the force models. */
164     private FieldMeanPlusShortPeriodicMapper mapper;
165 
166     /** Generator for the interpolation grid. */
167     private FieldInterpolationGrid<T> interpolationgrid;
168 
169     /** Create a new instance of DSSTPropagator.
170      *  <p>
171      *  After creation, there are no perturbing forces at all.
172      *  This means that if {@link #addForceModel addForceModel}
173      *  is not called after creation, the integrated orbit will
174      *  follow a Keplerian evolution only.
175      *  </p>
176      *
177      * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
178      *
179      *  @param field field used by default
180      *  @param integrator numerical integrator to use for propagation.
181      *  @param propagationType type of orbit to output (mean or osculating).
182      * @see #FieldDSSTPropagator(Field, FieldODEIntegrator, PropagationType,
183      * AttitudeProvider)
184      */
185     @DefaultDataContext
186     public FieldDSSTPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator, final PropagationType propagationType) {
187         this(field, integrator, propagationType,
188                 Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
189     }
190 
191     /** Create a new instance of DSSTPropagator.
192      *  <p>
193      *  After creation, there are no perturbing forces at all.
194      *  This means that if {@link #addForceModel addForceModel}
195      *  is not called after creation, the integrated orbit will
196      *  follow a Keplerian evolution only.
197      *  </p>
198      * @param field field used by default
199      *  @param integrator numerical integrator to use for propagation.
200      * @param propagationType type of orbit to output (mean or osculating).
201      * @param attitudeProvider attitude law to use.
202      * @since 10.1
203      */
204     public FieldDSSTPropagator(final Field<T> field,
205                                final FieldODEIntegrator<T> integrator,
206                                final PropagationType propagationType,
207                                final AttitudeProvider attitudeProvider) {
208         super(field, integrator, propagationType);
209         this.field  = field;
210         forceModels = new ArrayList<DSSTForceModel>();
211         initMapper(field);
212         // DSST uses only equinoctial orbits and mean longitude argument
213         setOrbitType(OrbitType.EQUINOCTIAL);
214         setPositionAngleType(PositionAngle.MEAN);
215         setAttitudeProvider(attitudeProvider);
216         setInterpolationGridToFixedNumberOfPoints(INTERPOLATION_POINTS_PER_STEP);
217     }
218 
219     /** Create a new instance of DSSTPropagator.
220      *  <p>
221      *  After creation, there are no perturbing forces at all.
222      *  This means that if {@link #addForceModel addForceModel}
223      *  is not called after creation, the integrated orbit will
224      *  follow a Keplerian evolution only. Only the mean orbits
225      *  will be generated.
226      *  </p>
227      *
228      * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
229      *
230      *  @param field fied used by default
231      *  @param integrator numerical integrator to use for propagation.
232      * @see #FieldDSSTPropagator(Field, FieldODEIntegrator, AttitudeProvider)
233      */
234     @DefaultDataContext
235     public FieldDSSTPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator) {
236         this(field, integrator,
237                 Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
238     }
239 
240     /** Create a new instance of DSSTPropagator.
241      *  <p>
242      *  After creation, there are no perturbing forces at all.
243      *  This means that if {@link #addForceModel addForceModel}
244      *  is not called after creation, the integrated orbit will
245      *  follow a Keplerian evolution only. Only the mean orbits
246      *  will be generated.
247      *  </p>
248      * @param field fied used by default
249      *  @param integrator numerical integrator to use for propagation.
250      * @param attitudeProvider attitude law to use.
251      * @since 10.1
252      */
253     public FieldDSSTPropagator(final Field<T> field,
254                                final FieldODEIntegrator<T> integrator,
255                                final AttitudeProvider attitudeProvider) {
256         super(field, integrator, PropagationType.MEAN);
257         this.field  = field;
258         forceModels = new ArrayList<DSSTForceModel>();
259         initMapper(field);
260         // DSST uses only equinoctial orbits and mean longitude argument
261         setOrbitType(OrbitType.EQUINOCTIAL);
262         setPositionAngleType(PositionAngle.MEAN);
263         setAttitudeProvider(attitudeProvider);
264         setInterpolationGridToFixedNumberOfPoints(INTERPOLATION_POINTS_PER_STEP);
265     }
266 
267     /** Set the central attraction coefficient μ.
268      * <p>
269      * Setting the central attraction coefficient is
270      * equivalent to {@link #addForceModel(DSSTForceModel) add}
271      * a {@link DSSTNewtonianAttraction} force model.
272      * </p>
273     * @param mu central attraction coefficient (m³/s²)
274     * @see #addForceModel(DSSTForceModel)
275     * @see #getAllForceModels()
276     */
277     public void setMu(final T mu) {
278         addForceModel(new DSSTNewtonianAttraction(mu.getReal()));
279     }
280 
281     /** Set the central attraction coefficient μ only in upper class.
282      * @param mu central attraction coefficient (m³/s²)
283      */
284     private void superSetMu(final T mu) {
285         super.setMu(mu);
286     }
287 
288     /** Check if Newtonian attraction force model is available.
289      * <p>
290      * Newtonian attraction is always the last force model in the list.
291      * </p>
292      * @return true if Newtonian attraction force model is available
293      */
294     private boolean hasNewtonianAttraction() {
295         final int last = forceModels.size() - 1;
296         return last >= 0 && forceModels.get(last) instanceof DSSTNewtonianAttraction;
297     }
298 
299     /** Set the initial state with osculating orbital elements.
300      *  @param initialState initial state (defined with osculating elements)
301      */
302     public void setInitialState(final FieldSpacecraftState<T> initialState) {
303         setInitialState(initialState, PropagationType.OSCULATING);
304     }
305 
306     /** Set the initial state.
307      *  @param initialState initial state
308      *  @param stateType defined if the orbital state is defined with osculating or mean elements
309      */
310     public void setInitialState(final FieldSpacecraftState<T> initialState,
311                                 final PropagationType stateType) {
312         switch (stateType) {
313             case MEAN:
314                 initialIsOsculating = false;
315                 break;
316             case OSCULATING:
317                 initialIsOsculating = true;
318                 break;
319             default:
320                 throw new OrekitInternalError(null);
321         }
322         resetInitialState(initialState);
323     }
324 
325     /** Reset the initial state.
326      *
327      *  @param state new initial state
328      */
329     @Override
330     public void resetInitialState(final FieldSpacecraftState<T> state) {
331         super.resetInitialState(state);
332         if (!hasNewtonianAttraction()) {
333             // use the state to define central attraction
334             setMu(state.getMu());
335         }
336         super.setStartDate(state.getDate());
337     }
338 
339     /** Set the selected short periodic coefficients that must be stored as additional states.
340      * @param selectedCoefficients short periodic coefficients that must be stored as additional states
341      * (null means no coefficients are selected, empty set means all coefficients are selected)
342      */
343     public void setSelectedCoefficients(final Set<String> selectedCoefficients) {
344         mapper.setSelectedCoefficients(selectedCoefficients == null ?
345                                        null : new HashSet<String>(selectedCoefficients));
346     }
347 
348     /** Get the selected short periodic coefficients that must be stored as additional states.
349      * @return short periodic coefficients that must be stored as additional states
350      * (null means no coefficients are selected, empty set means all coefficients are selected)
351      */
352     public Set<String> getSelectedCoefficients() {
353         final Set<String> set = mapper.getSelectedCoefficients();
354         return set == null ? null : Collections.unmodifiableSet(set);
355     }
356 
357     /** Check if the initial state is provided in osculating elements.
358      * @return true if initial state is provided in osculating elements
359      */
360     public boolean initialIsOsculating() {
361         return initialIsOsculating;
362     }
363 
364     /** Set the interpolation grid generator.
365      * <p>
366      * The generator will create an interpolation grid with a fixed
367      * number of points for each mean element integration step.
368      * </p>
369      * <p>
370      * If neither {@link #setInterpolationGridToFixedNumberOfPoints(int)}
371      * nor {@link #setInterpolationGridToMaxTimeGap(CalculusFieldElement)} has been called,
372      * by default the propagator is set as to 3 interpolations points per step.
373      * </p>
374      * @param interpolationPoints number of interpolation points at
375      * each integration step
376      * @see #setInterpolationGridToMaxTimeGap(CalculusFieldElement)
377      * @since 7.1
378      */
379     public void setInterpolationGridToFixedNumberOfPoints(final int interpolationPoints) {
380         interpolationgrid = new FieldFixedNumberInterpolationGrid<>(field, interpolationPoints);
381     }
382 
383     /** Set the interpolation grid generator.
384      * <p>
385      * The generator will create an interpolation grid with a maximum
386      * time gap between interpolation points.
387      * </p>
388      * <p>
389      * If neither {@link #setInterpolationGridToFixedNumberOfPoints(int)}
390      * nor {@link #setInterpolationGridToMaxTimeGap(CalculusFieldElement)} has been called,
391      * by default the propagator is set as to 3 interpolations points per step.
392      * </p>
393      * @param maxGap maximum time gap between interpolation points (seconds)
394      * @see #setInterpolationGridToFixedNumberOfPoints(int)
395      * @since 7.1
396      */
397     public void setInterpolationGridToMaxTimeGap(final T maxGap) {
398         interpolationgrid = new FieldMaxGapInterpolationGrid<>(field, maxGap);
399     }
400 
401     /** Add a force model to the global perturbation model.
402      *  <p>
403      *  If this method is not called at all,
404      *  the integrated orbit will follow a Keplerian evolution only.
405      *  </p>
406      *  @param force perturbing {@link DSSTForceModel force} to add
407      *  @see #removeForceModels()
408      *  @see #setMu(CalculusFieldElement)
409      */
410     public void addForceModel(final DSSTForceModel force) {
411 
412         if (force instanceof DSSTNewtonianAttraction) {
413             // we want to add the central attraction force model
414 
415             try {
416                 // ensure we are notified of any mu change
417                 force.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
418                     /** {@inheritDoc} */
419                     @Override
420                     public void valueChanged(final double previousValue, final ParameterDriver driver) {
421                         superSetMu(field.getZero().add(driver.getValue()));
422                     }
423                 });
424             } catch (OrekitException oe) {
425                 // this should never happen
426                 throw new OrekitInternalError(oe);
427             }
428 
429             if (hasNewtonianAttraction()) {
430                 // there is already a central attraction model, replace it
431                 forceModels.set(forceModels.size() - 1, force);
432             } else {
433                 // there are no central attraction model yet, add it at the end of the list
434                 forceModels.add(force);
435             }
436         } else {
437             // we want to add a perturbing force model
438             if (hasNewtonianAttraction()) {
439                 // insert the new force model before Newtonian attraction,
440                 // which should always be the last one in the list
441                 forceModels.add(forceModels.size() - 1, force);
442             } else {
443                 // we only have perturbing force models up to now, just append at the end of the list
444                 forceModels.add(force);
445             }
446         }
447 
448         force.registerAttitudeProvider(getAttitudeProvider());
449 
450     }
451 
452     /** Remove all perturbing force models from the global perturbation model
453      *  (except central attraction).
454      *  <p>
455      *  Once all perturbing forces have been removed (and as long as no new force model is added),
456      *  the integrated orbit will follow a Keplerian evolution only.
457      *  </p>
458      *  @see #addForceModel(DSSTForceModel)
459      */
460     public void removeForceModels() {
461         final int last = forceModels.size() - 1;
462         if (hasNewtonianAttraction()) {
463             // preserve the Newtonian attraction model at the end
464             final DSSTForceModel newton = forceModels.get(last);
465             forceModels.clear();
466             forceModels.add(newton);
467         } else {
468             forceModels.clear();
469         }
470     }
471 
472     /** Get all the force models, perturbing forces and Newtonian attraction included.
473      * @return list of perturbing force models, with Newtonian attraction being the
474      * last one
475      * @see #addForceModel(DSSTForceModel)
476      * @see #setMu(CalculusFieldElement)
477      */
478     public List<DSSTForceModel> getAllForceModels() {
479         return Collections.unmodifiableList(forceModels);
480     }
481 
482     /** Get propagation parameter type.
483      * @return orbit type used for propagation
484      */
485     public OrbitType getOrbitType() {
486         return super.getOrbitType();
487     }
488 
489     /** Get propagation parameter type.
490      * @return angle type to use for propagation
491      */
492     public PositionAngle getPositionAngleType() {
493         return super.getPositionAngleType();
494     }
495 
496     /** Conversion from mean to osculating orbit.
497      * <p>
498      * Compute osculating state <b>in a DSST sense</b>, corresponding to the
499      * mean SpacecraftState in input, and according to the Force models taken
500      * into account.
501      * </p><p>
502      * Since the osculating state is obtained by adding short-periodic variation
503      * of each force model, the resulting output will depend on the
504      * force models parameterized in input.
505      * </p>
506      * @param mean Mean state to convert
507      * @param forces Forces to take into account
508      * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
509      * like atmospheric drag, radiation pressure or specific user-defined models)
510      * @param <T> type of the elements
511      * @return osculating state in a DSST sense
512      */
513     @SuppressWarnings("unchecked")
514     public static <T extends CalculusFieldElement<T>> FieldSpacecraftState<T> computeOsculatingState(final FieldSpacecraftState<T> mean,
515                                                                                                  final AttitudeProvider attitudeProvider,
516                                                                                                  final Collection<DSSTForceModel> forces) {
517 
518         //Create the auxiliary object
519         final FieldAuxiliaryElements<T> aux = new FieldAuxiliaryElements<>(mean.getOrbit(), I);
520 
521         // Set the force models
522         final List<FieldShortPeriodTerms<T>> shortPeriodTerms = new ArrayList<FieldShortPeriodTerms<T>>();
523         for (final DSSTForceModel force : forces) {
524             final T[] parameters = force.getParameters(mean.getDate().getField());
525             force.registerAttitudeProvider(attitudeProvider);
526             shortPeriodTerms.addAll(force.initializeShortPeriodTerms(aux, PropagationType.OSCULATING, parameters));
527             force.updateShortPeriodTerms(parameters, mean);
528         }
529 
530         final FieldEquinoctialOrbit<T> osculatingOrbit = computeOsculatingOrbit(mean, shortPeriodTerms);
531 
532         return new FieldSpacecraftState<>(osculatingOrbit, mean.getAttitude(), mean.getMass(),
533                                           mean.getAdditionalStates());
534 
535     }
536 
537     /** Conversion from osculating to mean orbit.
538      * <p>
539      * Compute mean state <b>in a DSST sense</b>, corresponding to the
540      * osculating SpacecraftState in input, and according to the Force models
541      * taken into account.
542      * </p><p>
543      * Since the osculating state is obtained with the computation of
544      * short-periodic variation of each force model, the resulting output will
545      * depend on the force models parameterized in input.
546      * </p><p>
547      * The computation is done through a fixed-point iteration process.
548      * </p>
549      * @param osculating Osculating state to convert
550      * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
551      * like atmospheric drag, radiation pressure or specific user-defined models)
552      * @param forceModel Forces to take into account
553      * @param <T> type of the elements
554      * @return mean state in a DSST sense
555      */
556     public static <T extends CalculusFieldElement<T>> FieldSpacecraftState<T> computeMeanState(final FieldSpacecraftState<T> osculating,
557                                                                                            final AttitudeProvider attitudeProvider,
558                                                                                            final Collection<DSSTForceModel> forceModel) {
559         return computeMeanState(osculating, attitudeProvider, forceModel, EPSILON_DEFAULT, MAX_ITERATIONS_DEFAULT);
560     }
561 
562     /** Conversion from osculating to mean orbit.
563      * <p>
564      * Compute mean state <b>in a DSST sense</b>, corresponding to the
565      * osculating SpacecraftState in input, and according to the Force models
566      * taken into account.
567      * </p><p>
568      * Since the osculating state is obtained with the computation of
569      * short-periodic variation of each force model, the resulting output will
570      * depend on the force models parameterized in input.
571      * </p><p>
572      * The computation is done through a fixed-point iteration process.
573      * </p>
574      * @param osculating Osculating state to convert
575      * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
576      * like atmospheric drag, radiation pressure or specific user-defined models)
577      * @param forceModel Forces to take into account
578      * @param epsilon convergence threshold for mean parameters conversion
579      * @param maxIterations maximum iterations for mean parameters conversion
580      * @return mean state in a DSST sense
581      * @param <T> type of the elements
582      * @since 10.1
583      */
584     public static <T extends CalculusFieldElement<T>> FieldSpacecraftState<T> computeMeanState(final FieldSpacecraftState<T> osculating,
585                                                                                            final AttitudeProvider attitudeProvider,
586                                                                                            final Collection<DSSTForceModel> forceModel,
587                                                                                            final double epsilon,
588                                                                                            final int maxIterations) {
589         final FieldOrbit<T> meanOrbit = computeMeanOrbit(osculating, attitudeProvider, forceModel, epsilon, maxIterations);
590         return new FieldSpacecraftState<>(meanOrbit, osculating.getAttitude(), osculating.getMass(), osculating.getAdditionalStates());
591     }
592 
593     /** Override the default value of the parameter.
594     *  <p>
595     *  By default, if the initial orbit is defined as osculating,
596     *  it will be averaged over 2 satellite revolutions.
597     *  This can be changed by using this method.
598     *  </p>
599     *  @param satelliteRevolution number of satellite revolutions to use for converting osculating to mean
600     *                             elements
601     */
602     public void setSatelliteRevolution(final int satelliteRevolution) {
603         mapper.setSatelliteRevolution(satelliteRevolution);
604     }
605 
606    /** Get the number of satellite revolutions to use for converting osculating to mean elements.
607     *  @return number of satellite revolutions to use for converting osculating to mean elements
608     */
609     public int getSatelliteRevolution() {
610         return mapper.getSatelliteRevolution();
611     }
612 
613    /** {@inheritDoc} */
614     @Override
615     public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
616         super.setAttitudeProvider(attitudeProvider);
617 
618         //Register the attitude provider for each force model
619         for (final DSSTForceModel force : forceModels) {
620             force.registerAttitudeProvider(attitudeProvider);
621         }
622     }
623 
624     /** Method called just before integration.
625      * <p>
626      * The default implementation does nothing, it may be specialized in subclasses.
627      * </p>
628      * @param initialState initial state
629      * @param tEnd target date at which state should be propagated
630      */
631     @SuppressWarnings("unchecked")
632     @Override
633     protected void beforeIntegration(final FieldSpacecraftState<T> initialState,
634                                      final FieldAbsoluteDate<T> tEnd) {
635 
636         // check if only mean elements must be used
637         final PropagationType type = isMeanOrbit();
638 
639         // compute common auxiliary elements
640         final FieldAuxiliaryElements<T> aux = new FieldAuxiliaryElements<>(initialState.getOrbit(), I);
641 
642         // initialize all perturbing forces
643         final List<FieldShortPeriodTerms<T>> shortPeriodTerms = new ArrayList<FieldShortPeriodTerms<T>>();
644         for (final DSSTForceModel force : forceModels) {
645             shortPeriodTerms.addAll(force.initializeShortPeriodTerms(aux, type, force.getParameters(field)));
646         }
647         mapper.setShortPeriodTerms(shortPeriodTerms);
648 
649         // if required, insert the special short periodics step handler
650         if (type == PropagationType.OSCULATING) {
651             final FieldShortPeriodicsHandler spHandler = new FieldShortPeriodicsHandler(forceModels);
652             // Compute short periodic coefficients for this point
653             for (DSSTForceModel forceModel : forceModels) {
654                 forceModel.updateShortPeriodTerms(forceModel.getParameters(field), initialState);
655 
656             }
657             final Collection<FieldODEStepHandler<T>> stepHandlers = new ArrayList<FieldODEStepHandler<T>>();
658             stepHandlers.add(spHandler);
659             final FieldODEIntegrator<T> integrator = getIntegrator();
660             final Collection<FieldODEStepHandler<T>> existing = integrator.getStepHandlers();
661             stepHandlers.addAll(existing);
662 
663             integrator.clearStepHandlers();
664 
665             // add back the existing handlers after the short periodics one
666             for (final FieldODEStepHandler<T> sp : stepHandlers) {
667                 integrator.addStepHandler(sp);
668             }
669         }
670     }
671 
672     /** {@inheritDoc} */
673     @Override
674     protected void afterIntegration() {
675         // remove the special short periodics step handler if added before
676         if (isMeanOrbit() ==  PropagationType.OSCULATING) {
677             final List<FieldODEStepHandler<T>> preserved = new ArrayList<FieldODEStepHandler<T>>();
678             final FieldODEIntegrator<T> integrator = getIntegrator();
679 
680             // clear the list
681             integrator.clearStepHandlers();
682 
683             // add back the step handlers that were important for the user
684             for (final FieldODEStepHandler<T> sp : preserved) {
685                 integrator.addStepHandler(sp);
686             }
687         }
688     }
689 
690     /** Compute mean state from osculating state.
691      * <p>
692      * Compute in a DSST sense the mean state corresponding to the input osculating state.
693      * </p><p>
694      * The computing is done through a fixed-point iteration process.
695      * </p>
696      * @param osculating initial osculating state
697      * @param attitudeProvider attitude provider (may be null if there are no Gaussian force models
698      * like atmospheric drag, radiation pressure or specific user-defined models)
699      * @param forceModel force models
700      * @param epsilon convergence threshold for mean parameters conversion
701      * @param maxIterations maximum iterations for mean parameters conversion
702      * @param <T> type of the elements
703      * @return mean state
704      * @since 10.1
705      */
706     @SuppressWarnings("unchecked")
707     private static <T extends CalculusFieldElement<T>> FieldOrbit<T> computeMeanOrbit(final FieldSpacecraftState<T> osculating, final AttitudeProvider attitudeProvider, final Collection<DSSTForceModel> forceModel,
708                                                                                   final double epsilon, final int maxIterations) {
709 
710         // zero
711         final T zero = osculating.getDate().getField().getZero();
712 
713         // rough initialization of the mean parameters
714         FieldEquinoctialOrbit<T> meanOrbit = (FieldEquinoctialOrbit<T>) OrbitType.EQUINOCTIAL.convertType(osculating.getOrbit());
715 
716         // threshold for each parameter
717         final T epsilonT   = zero.add(epsilon);
718         final T thresholdA = epsilonT.multiply(FastMath.abs(meanOrbit.getA()).add(1.));
719         final T thresholdE = epsilonT.multiply(meanOrbit.getE().add(1.));
720         final T thresholdI = epsilonT.multiply(meanOrbit.getI().add(1.));
721         final T thresholdL = epsilonT.multiply(zero.getPi());
722 
723         // ensure all Gaussian force models can rely on attitude
724         for (final DSSTForceModel force : forceModel) {
725             force.registerAttitudeProvider(attitudeProvider);
726         }
727 
728         int i = 0;
729         while (i++ < maxIterations) {
730 
731             final FieldSpacecraftState<T> meanState = new FieldSpacecraftState<>(meanOrbit, osculating.getAttitude(), osculating.getMass());
732 
733             //Create the auxiliary object
734             final FieldAuxiliaryElements<T> aux = new FieldAuxiliaryElements<>(meanOrbit, I);
735 
736             // Set the force models
737             final List<FieldShortPeriodTerms<T>> shortPeriodTerms = new ArrayList<FieldShortPeriodTerms<T>>();
738             for (final DSSTForceModel force : forceModel) {
739                 final T[] parameters = force.getParameters(osculating.getDate().getField());
740                 shortPeriodTerms.addAll(force.initializeShortPeriodTerms(aux, PropagationType.OSCULATING, parameters));
741                 force.updateShortPeriodTerms(parameters, meanState);
742             }
743 
744             // recompute the osculating parameters from the current mean parameters
745             final FieldEquinoctialOrbit<T> rebuilt = computeOsculatingOrbit(meanState, shortPeriodTerms);
746 
747             // adapted parameters residuals
748             final T deltaA  = osculating.getA().subtract(rebuilt.getA());
749             final T deltaEx = osculating.getEquinoctialEx().subtract(rebuilt.getEquinoctialEx());
750             final T deltaEy = osculating.getEquinoctialEy().subtract(rebuilt.getEquinoctialEy());
751             final T deltaHx = osculating.getHx().subtract(rebuilt.getHx());
752             final T deltaHy = osculating.getHy().subtract(rebuilt.getHy());
753             final T deltaLv = MathUtils.normalizeAngle(osculating.getLv().subtract(rebuilt.getLv()), zero);
754 
755             // check convergence
756             if (FastMath.abs(deltaA).getReal()  < thresholdA.getReal() &&
757                 FastMath.abs(deltaEx).getReal() < thresholdE.getReal() &&
758                 FastMath.abs(deltaEy).getReal() < thresholdE.getReal() &&
759                 FastMath.abs(deltaHx).getReal() < thresholdI.getReal() &&
760                 FastMath.abs(deltaHy).getReal() < thresholdI.getReal() &&
761                 FastMath.abs(deltaLv).getReal() < thresholdL.getReal()) {
762                 return meanOrbit;
763             }
764 
765             // update mean parameters
766             meanOrbit = new FieldEquinoctialOrbit<>(meanOrbit.getA().add(deltaA),
767                                                     meanOrbit.getEquinoctialEx().add(deltaEx),
768                                                     meanOrbit.getEquinoctialEy().add(deltaEy),
769                                                     meanOrbit.getHx().add(deltaHx),
770                                                     meanOrbit.getHy().add(deltaHy),
771                                                     meanOrbit.getLv().add(deltaLv),
772                                                     PositionAngle.TRUE, meanOrbit.getFrame(),
773                                                     meanOrbit.getDate(), meanOrbit.getMu());
774         }
775 
776         throw new OrekitException(OrekitMessages.UNABLE_TO_COMPUTE_DSST_MEAN_PARAMETERS, i);
777     }
778 
779     /** Compute osculating state from mean state.
780      * <p>
781      * Compute and add the short periodic variation to the mean {@link SpacecraftState}.
782      * </p>
783      * @param meanState initial mean state
784      * @param shortPeriodTerms short period terms
785      * @param <T> type of the elements
786      * @return osculating state
787      */
788     private static <T extends CalculusFieldElement<T>> FieldEquinoctialOrbit<T> computeOsculatingOrbit(final FieldSpacecraftState<T> meanState,
789                                                                                                    final List<FieldShortPeriodTerms<T>> shortPeriodTerms) {
790 
791         final T[] mean = MathArrays.buildArray(meanState.getDate().getField(), 6);
792         final T[] meanDot = MathArrays.buildArray(meanState.getDate().getField(), 6);
793         OrbitType.EQUINOCTIAL.mapOrbitToArray(meanState.getOrbit(), PositionAngle.MEAN, mean, meanDot);
794         final T[] y = mean.clone();
795         for (final FieldShortPeriodTerms<T> spt : shortPeriodTerms) {
796             final T[] shortPeriodic = spt.value(meanState.getOrbit());
797             for (int i = 0; i < shortPeriodic.length; i++) {
798                 y[i] = y[i].add(shortPeriodic[i]);
799             }
800         }
801         return (FieldEquinoctialOrbit<T>) OrbitType.EQUINOCTIAL.mapArrayToOrbit(y, meanDot,
802                                                                                 PositionAngle.MEAN, meanState.getDate(),
803                                                                                 meanState.getMu(), meanState.getFrame());
804     }
805 
806     /** {@inheritDoc} */
807     @Override
808     protected FieldSpacecraftState<T> getInitialIntegrationState() {
809         if (initialIsOsculating) {
810             // the initial state is an osculating state,
811             // it must be converted to mean state
812             return computeMeanState(getInitialState(), getAttitudeProvider(), forceModels);
813         } else {
814             // the initial state is already a mean state
815             return getInitialState();
816         }
817     }
818 
819     /** {@inheritDoc}
820      * <p>
821      * Note that for DSST, orbit type is hardcoded to {@link OrbitType#EQUINOCTIAL}
822      * and position angle type is hardcoded to {@link PositionAngle#MEAN}, so
823      * the corresponding parameters are ignored.
824      * </p>
825      */
826     @Override
827     protected FieldStateMapper<T> createMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
828                                                final OrbitType ignoredOrbitType, final PositionAngle ignoredPositionAngleType,
829                                                final AttitudeProvider attitudeProvider, final Frame frame) {
830 
831         // create a mapper with the common settings provided as arguments
832         final FieldMeanPlusShortPeriodicMapper newMapper =
833                 new FieldMeanPlusShortPeriodicMapper(referenceDate, mu, attitudeProvider, frame);
834 
835         // copy the specific settings from the existing mapper
836         if (mapper != null) {
837             newMapper.setSatelliteRevolution(mapper.getSatelliteRevolution());
838             newMapper.setSelectedCoefficients(mapper.getSelectedCoefficients());
839             newMapper.setShortPeriodTerms(mapper.getShortPeriodTerms());
840         }
841 
842         mapper = newMapper;
843         return mapper;
844 
845     }
846 
847     /** Internal mapper using mean parameters plus short periodic terms. */
848     private class FieldMeanPlusShortPeriodicMapper extends FieldStateMapper<T> {
849 
850         /** Short periodic coefficients that must be stored as additional states. */
851         private Set<String>                selectedCoefficients;
852 
853         /** Number of satellite revolutions in the averaging interval. */
854         private int                        satelliteRevolution;
855 
856         /** Short period terms. */
857         private List<FieldShortPeriodTerms<T>>     shortPeriodTerms;
858 
859         /** Simple constructor.
860          * @param referenceDate reference date
861          * @param mu central attraction coefficient (m³/s²)
862          * @param attitudeProvider attitude provider
863          * @param frame inertial frame
864          */
865         FieldMeanPlusShortPeriodicMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
866                                          final AttitudeProvider attitudeProvider, final Frame frame) {
867 
868             super(referenceDate, mu, OrbitType.EQUINOCTIAL, PositionAngle.MEAN, attitudeProvider, frame);
869 
870             this.selectedCoefficients = null;
871 
872             // Default averaging period for conversion from osculating to mean elements
873             this.satelliteRevolution = 2;
874 
875             this.shortPeriodTerms    = Collections.emptyList();
876 
877         }
878 
879         /** {@inheritDoc} */
880         @Override
881         public FieldSpacecraftState<T> mapArrayToState(final FieldAbsoluteDate<T> date,
882                                                        final T[] y, final T[] yDot,
883                                                        final PropagationType type) {
884 
885             // add short periodic variations to mean elements to get osculating elements
886             // (the loop may not be performed if there are no force models and in the
887             //  case we want to remain in mean parameters only)
888             final T[] elements = y.clone();
889             final Map<String, T[]> coefficients;
890             switch (type) {
891                 case MEAN:
892                     coefficients = null;
893                     break;
894                 case OSCULATING:
895                     final FieldOrbit<T> meanOrbit = OrbitType.EQUINOCTIAL.mapArrayToOrbit(elements, yDot, PositionAngle.MEAN, date, getMu(), getFrame());
896                     coefficients = selectedCoefficients == null ? null : new HashMap<String, T[]>();
897                     for (final FieldShortPeriodTerms<T> spt : shortPeriodTerms) {
898                         final T[] shortPeriodic = spt.value(meanOrbit);
899                         for (int i = 0; i < shortPeriodic.length; i++) {
900                             elements[i] = elements[i].add(shortPeriodic[i]);
901                         }
902                         if (selectedCoefficients != null) {
903                             coefficients.putAll(spt.getCoefficients(date, selectedCoefficients));
904                         }
905                     }
906                     break;
907                 default:
908                     throw new OrekitInternalError(null);
909             }
910 
911             final T mass = elements[6];
912             if (mass.getReal() <= 0.0) {
913                 throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
914             }
915 
916             final FieldOrbit<T> orbit       = OrbitType.EQUINOCTIAL.mapArrayToOrbit(elements, yDot, PositionAngle.MEAN, date, getMu(), getFrame());
917             final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
918 
919             if (coefficients == null) {
920                 return new FieldSpacecraftState<>(orbit, attitude, mass);
921             } else {
922                 return new FieldSpacecraftState<>(orbit, attitude, mass, coefficients);
923             }
924 
925         }
926 
927         /** {@inheritDoc} */
928         @Override
929         public void mapStateToArray(final FieldSpacecraftState<T> state, final T[] y, final T[] yDot) {
930 
931             OrbitType.EQUINOCTIAL.mapOrbitToArray(state.getOrbit(), PositionAngle.MEAN, y, yDot);
932             y[6] = state.getMass();
933 
934         }
935 
936         /** Set the number of satellite revolutions to use for converting osculating to mean elements.
937          *  <p>
938          *  By default, if the initial orbit is defined as osculating,
939          *  it will be averaged over 2 satellite revolutions.
940          *  This can be changed by using this method.
941          *  </p>
942          *  @param satelliteRevolution number of satellite revolutions to use for converting osculating to mean
943          *                             elements
944          */
945         public void setSatelliteRevolution(final int satelliteRevolution) {
946             this.satelliteRevolution = satelliteRevolution;
947         }
948 
949         /** Get the number of satellite revolutions to use for converting osculating to mean elements.
950          *  @return number of satellite revolutions to use for converting osculating to mean elements
951          */
952         public int getSatelliteRevolution() {
953             return satelliteRevolution;
954         }
955 
956         /** Set the selected short periodic coefficients that must be stored as additional states.
957          * @param selectedCoefficients short periodic coefficients that must be stored as additional states
958          * (null means no coefficients are selected, empty set means all coefficients are selected)
959          */
960         public void setSelectedCoefficients(final Set<String> selectedCoefficients) {
961             this.selectedCoefficients = selectedCoefficients;
962         }
963 
964         /** Get the selected short periodic coefficients that must be stored as additional states.
965          * @return short periodic coefficients that must be stored as additional states
966          * (null means no coefficients are selected, empty set means all coefficients are selected)
967          */
968         public Set<String> getSelectedCoefficients() {
969             return selectedCoefficients;
970         }
971 
972         /** Set the short period terms.
973          * @param shortPeriodTerms short period terms
974          * @since 7.1
975          */
976         public void setShortPeriodTerms(final List<FieldShortPeriodTerms<T>> shortPeriodTerms) {
977             this.shortPeriodTerms = shortPeriodTerms;
978         }
979 
980         /** Get the short period terms.
981          * @return shortPeriodTerms short period terms
982          * @since 7.1
983          */
984         public List<FieldShortPeriodTerms<T>> getShortPeriodTerms() {
985             return shortPeriodTerms;
986         }
987 
988     }
989 
990     /** {@inheritDoc} */
991     @Override
992     protected MainStateEquations<T> getMainStateEquations(final FieldODEIntegrator<T> integrator) {
993         return new Main(integrator);
994     }
995 
996     /** Internal class for mean parameters integration. */
997     private class Main implements MainStateEquations<T> {
998 
999         /** Derivatives array. */
1000         private final T[] yDot;
1001 
1002         /** Simple constructor.
1003          * @param integrator numerical integrator to use for propagation.
1004          */
1005         Main(final FieldODEIntegrator<T> integrator) {
1006             yDot = MathArrays.buildArray(field, 7);
1007 
1008             for (final DSSTForceModel forceModel : forceModels) {
1009                 final FieldEventDetector<T>[] modelDetectors = forceModel.getFieldEventsDetectors(field);
1010                 if (modelDetectors != null) {
1011                     for (final FieldEventDetector<T> detector : modelDetectors) {
1012                         setUpEventDetector(integrator, detector);
1013                     }
1014                 }
1015             }
1016 
1017         }
1018 
1019         /** {@inheritDoc} */
1020         @Override
1021         public void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target) {
1022             final SpacecraftState stateD  = initialState.toSpacecraftState();
1023             final AbsoluteDate    targetD = target.toAbsoluteDate();
1024             for (final DSSTForceModel forceModel : forceModels) {
1025                 forceModel.init(stateD, targetD);
1026             }
1027         }
1028 
1029         /** {@inheritDoc} */
1030         @Override
1031         public T[] computeDerivatives(final FieldSpacecraftState<T> state) {
1032 
1033             final T zero = state.getDate().getField().getZero();
1034             Arrays.fill(yDot, zero);
1035 
1036             // compute common auxiliary elements
1037             final FieldAuxiliaryElements<T> auxiliaryElements = new FieldAuxiliaryElements<>(state.getOrbit(), I);
1038 
1039             // compute the contributions of all perturbing forces
1040             for (final DSSTForceModel forceModel : forceModels) {
1041                 final T[] daidt = elementRates(forceModel, state, auxiliaryElements, forceModel.getParameters(field));
1042                 for (int i = 0; i < daidt.length; i++) {
1043                     yDot[i] = yDot[i].add(daidt[i]);
1044                 }
1045             }
1046 
1047             return yDot.clone();
1048         }
1049 
1050         /** This method allows to compute the mean equinoctial elements rates da<sub>i</sub> / dt
1051          *  for a specific force model.
1052          *  @param forceModel force to take into account
1053          *  @param state current state
1054          *  @param auxiliaryElements auxiliary elements related to the current orbit
1055          *  @param parameters force model parameters
1056          *  @return the mean equinoctial elements rates da<sub>i</sub> / dt
1057          */
1058         private T[] elementRates(final DSSTForceModel forceModel,
1059                                  final FieldSpacecraftState<T> state,
1060                                  final FieldAuxiliaryElements<T> auxiliaryElements,
1061                                  final T[] parameters) {
1062             return forceModel.getMeanElementRate(state, auxiliaryElements, parameters);
1063         }
1064 
1065     }
1066 
1067     /** Estimate tolerance vectors for an AdaptativeStepsizeIntegrator.
1068      *  <p>
1069      *  The errors are estimated from partial derivatives properties of orbits,
1070      *  starting from a scalar position error specified by the user.
1071      *  Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
1072      *  we get at constant energy (i.e. on a Keplerian trajectory):
1073      *
1074      *  <pre>
1075      *  V² r |dV| = mu |dr|
1076      *  </pre>
1077      *
1078      *  <p> So we deduce a scalar velocity error consistent with the position error. From here, we apply
1079      *  orbits Jacobians matrices to get consistent errors on orbital parameters.
1080      *
1081      *  <p>
1082      *  The tolerances are only <em>orders of magnitude</em>, and integrator tolerances are only
1083      *  local estimates, not global ones. So some care must be taken when using these tolerances.
1084      *  Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error
1085      *  position after several orbits integration.
1086      *  </p>
1087      * @param <T> elements type
1088      * @param dP user specified position error (m)
1089      * @param orbit reference orbit
1090      * @return a two rows array, row 0 being the absolute tolerance error
1091      *                       and row 1 being the relative tolerance error
1092      */
1093     public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final FieldOrbit<T> orbit) {
1094         return FieldNumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
1095     }
1096 
1097     /** Estimate tolerance vectors for an AdaptativeStepsizeIntegrator.
1098      *  <p>
1099      *  The errors are estimated from partial derivatives properties of orbits,
1100      *  starting from scalar position and velocity errors specified by the user.
1101      *  <p>
1102      *  The tolerances are only <em>orders of magnitude</em>, and integrator tolerances are only
1103      *  local estimates, not global ones. So some care must be taken when using these tolerances.
1104      *  Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error
1105      *  position after several orbits integration.
1106      *  </p>
1107      *
1108      * @param <T> elements type
1109      * @param dP user specified position error (m)
1110      * @param dV user specified velocity error (m/s)
1111      * @param orbit reference orbit
1112      * @return a two rows array, row 0 being the absolute tolerance error
1113      *                       and row 1 being the relative tolerance error
1114      * @since 10.3
1115      */
1116     public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final T dV,
1117                                                                         final FieldOrbit<T> orbit) {
1118         return FieldNumericalPropagator.tolerances(dP, dV, orbit, OrbitType.EQUINOCTIAL);
1119     }
1120 
1121     /** Step handler used to compute the parameters for the short periodic contributions.
1122      * @author Lucian Barbulescu
1123      */
1124     private class FieldShortPeriodicsHandler implements FieldODEStepHandler<T> {
1125 
1126         /** Force models used to compute short periodic terms. */
1127         private final List<DSSTForceModel> forceModels;
1128 
1129         /** Constructor.
1130          * @param forceModels force models
1131          */
1132         FieldShortPeriodicsHandler(final List<DSSTForceModel> forceModels) {
1133             this.forceModels = forceModels;
1134         }
1135 
1136         /** {@inheritDoc} */
1137         @SuppressWarnings("unchecked")
1138         @Override
1139         public void handleStep(final FieldODEStateInterpolator<T> interpolator) {
1140 
1141             // Get the grid points to compute
1142             final T[] interpolationPoints =
1143                             interpolationgrid.getGridPoints(interpolator.getPreviousState().getTime(),
1144                                                             interpolator.getCurrentState().getTime());
1145 
1146             final FieldSpacecraftState<T>[] meanStates = new FieldSpacecraftState[interpolationPoints.length];
1147             for (int i = 0; i < interpolationPoints.length; ++i) {
1148 
1149                 // Build the mean state interpolated at grid point
1150                 final T time = interpolationPoints[i];
1151                 final FieldODEStateAndDerivative<T> sd = interpolator.getInterpolatedState(time);
1152                 meanStates[i] = mapper.mapArrayToState(time,
1153                                                        sd.getPrimaryState(),
1154                                                        sd.getPrimaryDerivative(),
1155                                                        PropagationType.MEAN);
1156 
1157             }
1158 
1159             // Compute short periodic coefficients for this step
1160             for (DSSTForceModel forceModel : forceModels) {
1161                 forceModel.updateShortPeriodTerms(forceModel.getParameters(field), meanStates);
1162             }
1163 
1164         }
1165     }
1166 
1167 }