1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.events;
18  
19  import java.util.function.Function;
20  
21  import org.hipparchus.analysis.UnivariateFunction;
22  import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
23  import org.hipparchus.util.FastMath;
24  import org.hipparchus.util.MathUtils;
25  import org.orekit.errors.OrekitIllegalArgumentException;
26  import org.orekit.errors.OrekitMessages;
27  import org.orekit.orbits.CircularOrbit;
28  import org.orekit.orbits.EquinoctialOrbit;
29  import org.orekit.orbits.KeplerianOrbit;
30  import org.orekit.orbits.Orbit;
31  import org.orekit.orbits.OrbitType;
32  import org.orekit.orbits.PositionAngle;
33  import org.orekit.propagation.SpacecraftState;
34  import org.orekit.propagation.events.handlers.EventHandler;
35  import org.orekit.propagation.events.handlers.StopOnIncreasing;
36  import org.orekit.time.AbsoluteDate;
37  import org.orekit.utils.TimeSpanMap;
38  
39  /** Detector for in-orbit position angle.
40   * <p>
41   * The detector is based on anomaly for {@link OrbitType#KEPLERIAN Keplerian}
42   * orbits, latitude argument for {@link OrbitType#CIRCULAR circular} orbits,
43   * or longitude argument for {@link OrbitType#EQUINOCTIAL equinoctial} orbits.
44   * It does not support {@link OrbitType#CARTESIAN Cartesian} orbits. The
45   * angles can be either {@link PositionAngle#TRUE true}, {link {@link PositionAngle#MEAN
46   * mean} or {@link PositionAngle#ECCENTRIC eccentric} angles.
47   * </p>
48   * @author Luc Maisonobe
49   * @since 7.1
50   */
51  public class PositionAngleDetector extends AbstractDetector<PositionAngleDetector> {
52  
53      /** Orbit type defining the angle type. */
54      private final OrbitType orbitType;
55  
56      /** Type of position angle. */
57      private final PositionAngle positionAngle;
58  
59      /** Fixed angle to be crossed. */
60      private final double angle;
61  
62      /** Position angle extraction function. */
63      private final Function<Orbit, Double> positionAngleExtractor;
64  
65      /** Estimators for the offset angle, taking care of 2π wrapping and g function continuity. */
66      private TimeSpanMap<OffsetEstimator> offsetEstimators;
67  
68      /** Build a new detector.
69       * <p>The new instance uses default values for maximal checking interval
70       * ({@link #DEFAULT_MAXCHECK}) and convergence threshold ({@link
71       * #DEFAULT_THRESHOLD}).</p>
72       * @param orbitType orbit type defining the angle type
73       * @param positionAngle type of position angle
74       * @param angle fixed angle to be crossed
75       * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
76       */
77      public PositionAngleDetector(final OrbitType orbitType, final PositionAngle positionAngle,
78                                   final double angle)
79          throws OrekitIllegalArgumentException {
80          this(DEFAULT_MAXCHECK, DEFAULT_THRESHOLD, orbitType, positionAngle, angle);
81      }
82  
83      /** Build a detector.
84       * @param maxCheck maximal checking interval (s)
85       * @param threshold convergence threshold (s)
86       * @param orbitType orbit type defining the angle type
87       * @param positionAngle type of position angle
88       * @param angle fixed angle to be crossed
89       * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
90       */
91      public PositionAngleDetector(final double maxCheck, final double threshold,
92                                   final OrbitType orbitType, final PositionAngle positionAngle,
93                                   final double angle)
94          throws OrekitIllegalArgumentException {
95          this(maxCheck, threshold, DEFAULT_MAX_ITER, new StopOnIncreasing<PositionAngleDetector>(),
96               orbitType, positionAngle, angle);
97      }
98  
99      /** Private constructor with full parameters.
100      * <p>
101      * This constructor is private as users are expected to use the builder
102      * API with the various {@code withXxx()} methods to set up the instance
103      * in a readable manner without using a huge amount of parameters.
104      * </p>
105      * @param maxCheck maximum checking interval (s)
106      * @param threshold convergence threshold (s)
107      * @param maxIter maximum number of iterations in the event time search
108      * @param handler event handler to call at event occurrences
109      * @param orbitType orbit type defining the angle type
110      * @param positionAngle type of position angle
111      * @param angle fixed angle to be crossed
112      * @exception OrekitIllegalArgumentException if orbit type is {@link OrbitType#CARTESIAN}
113      */
114     private PositionAngleDetector(final double maxCheck, final double threshold,
115                                      final int maxIter, final EventHandler<? super PositionAngleDetector> handler,
116                                      final OrbitType orbitType, final PositionAngle positionAngle,
117                                      final double angle)
118         throws OrekitIllegalArgumentException {
119 
120         super(maxCheck, threshold, maxIter, handler);
121 
122         this.orbitType        = orbitType;
123         this.positionAngle    = positionAngle;
124         this.angle            = angle;
125         this.offsetEstimators = null;
126 
127         switch (orbitType) {
128             case KEPLERIAN:
129                 positionAngleExtractor = o -> ((KeplerianOrbit) orbitType.convertType(o)).getAnomaly(positionAngle);
130                 break;
131             case CIRCULAR:
132                 positionAngleExtractor = o -> ((CircularOrbit) orbitType.convertType(o)).getAlpha(positionAngle);
133                 break;
134             case EQUINOCTIAL:
135                 positionAngleExtractor = o -> ((EquinoctialOrbit) orbitType.convertType(o)).getL(positionAngle);
136                 break;
137             default:
138                 final String sep = ", ";
139                 throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_TYPE_NOT_ALLOWED,
140                                                          orbitType,
141                                                          OrbitType.KEPLERIAN   + sep +
142                                                          OrbitType.CIRCULAR    + sep +
143                                                          OrbitType.EQUINOCTIAL);
144         }
145 
146     }
147 
148     /** {@inheritDoc} */
149     @Override
150     protected PositionAngleDetector create(final double newMaxCheck, final double newThreshold,
151                                               final int newMaxIter,
152                                               final EventHandler<? super PositionAngleDetector> newHandler) {
153         return new PositionAngleDetector(newMaxCheck, newThreshold, newMaxIter, newHandler,
154                                          orbitType, positionAngle, angle);
155     }
156 
157     /** Get the orbit type defining the angle type.
158      * @return orbit type defining the angle type
159      */
160     public OrbitType getOrbitType() {
161         return orbitType;
162     }
163 
164     /** Get the type of position angle.
165      * @return type of position angle
166      */
167     public PositionAngle getPositionAngle() {
168         return positionAngle;
169     }
170 
171     /** Get the fixed angle to be crossed (radians).
172      * @return fixed angle to be crossed (radians)
173      */
174     public double getAngle() {
175         return angle;
176     }
177 
178     /** {@inheritDoc} */
179     public void init(final SpacecraftState s0, final AbsoluteDate t) {
180         super.init(s0, t);
181         offsetEstimators = new TimeSpanMap<>(new OffsetEstimator(s0.getOrbit(), +1.0));
182     }
183 
184     /** Compute the value of the detection function.
185      * <p>
186      * The value is the angle difference between the spacecraft and the fixed
187      * angle to be crossed, with some sign tweaks to ensure continuity.
188      * These tweaks imply the {@code increasing} flag in events detection becomes
189      * irrelevant here! As an example, the angle always increase in a Keplerian
190      * orbit, but this g function will increase and decrease so it
191      * will cross the zero value once per orbit, in increasing and decreasing
192      * directions on alternate orbits..
193      * </p>
194      * @param s the current state information: date, kinematics, attitude
195      * @return angle difference between the spacecraft and the fixed
196      * angle, with some sign tweaks to ensure continuity
197      */
198     public double g(final SpacecraftState s) {
199 
200         final Orbit orbit = s.getOrbit();
201 
202         // angle difference
203         OffsetEstimator estimator = offsetEstimators.get(s.getDate());
204         double          delta     = estimator.delta(orbit);
205 
206         // we use a value greater than π for handover in order to avoid
207         // several switches to be estimated as the calling propagator
208         // and Orbit.shiftedBy have different accuracy. It is sufficient
209         // to have a handover roughly opposite to the detected position angle
210         while (FastMath.abs(delta) >= 3.5) {
211             // we are too far away from the current estimator, we need to set up a new one
212             // ensuring that we do have a crossing event in the current orbit
213             // and we ensure sign continuity with the current estimator
214 
215             // find when the previous estimator becomes invalid
216             final AbsoluteDate handover = estimator.dateForOffset(FastMath.copySign(FastMath.PI, delta), orbit);
217 
218             // perform handover to a new estimator at this date
219             estimator = new OffsetEstimator(orbit, delta);
220             delta     = estimator.delta(orbit);
221             if (isForward()) {
222                 offsetEstimators.addValidAfter(estimator, handover.getDate());
223             } else {
224                 offsetEstimators.addValidBefore(estimator, handover.getDate());
225             }
226 
227         }
228 
229         return delta;
230 
231     }
232 
233     /** Local class for estimating offset angle, handling 2π wrap-up and sign continuity. */
234     private class OffsetEstimator {
235 
236         /** Target angle. */
237         private final double target;
238 
239         /** Sign correction to offset. */
240         private final double sign;
241 
242         /** Reference angle. */
243         private final double r0;
244 
245         /** Slope of the linearized model. */
246         private final double r1;
247 
248         /** Reference date. */
249         private final AbsoluteDate t0;
250 
251         /** Simple constructor.
252          * @param orbit current orbit
253          * @param currentSign desired sign of the offset at current orbit time (magnitude is ignored)
254          */
255         OffsetEstimator(final Orbit orbit, final double currentSign) {
256             r0     = positionAngleExtractor.apply(orbit);
257             target = MathUtils.normalizeAngle(angle, r0);
258             sign   = FastMath.copySign(1.0, (r0 - target) * currentSign);
259             r1     = orbit.getKeplerianMeanMotion();
260             t0     = orbit.getDate();
261         }
262 
263         /** Compute offset from reference angle.
264          * @param orbit current orbit
265          * @return offset between current angle and reference angle
266          */
267         public double delta(final Orbit orbit) {
268             final double rawAngle        = positionAngleExtractor.apply(orbit);
269             final double linearReference = r0 + r1 * orbit.getDate().durationFrom(t0);
270             final double linearizedAngle = MathUtils.normalizeAngle(rawAngle, linearReference);
271             return sign * (linearizedAngle - target);
272         }
273 
274         /** Find date at which offset reaches specified value.
275          * <p>
276          * This computation is an approximation because it relies on
277          * {@link Orbit#shiftedBy(double)} only.
278          * </p>
279          * @param offset target value for offset angle
280          * @param orbit current orbit
281          * @return approximate date at which offset reached specified value
282          */
283         public AbsoluteDate dateForOffset(final double offset, final Orbit orbit) {
284 
285             // bracket the search
286             final double period = orbit.getKeplerianPeriod();
287             final double delta0 = delta(orbit);
288             final double searchInf;
289             final double searchSup;
290             if ((delta0 - offset) * sign >= 0) {
291                 // the date is before current orbit
292                 searchInf = -period;
293                 searchSup = 0;
294             } else {
295                 // the date is after current orbit
296                 searchInf = 0;
297                 searchSup = +period;
298             }
299 
300             // find the date as an offset from current orbit
301             final BracketingNthOrderBrentSolver solver = new BracketingNthOrderBrentSolver(getThreshold(), 5);
302             final UnivariateFunction            f      = dt -> delta(orbit.shiftedBy(dt)) - offset;
303             final double                        root   = solver.solve(getMaxIterationCount(), f, searchInf, searchSup);
304 
305             return orbit.getDate().shiftedBy(root);
306 
307         }
308 
309     }
310 
311 }