1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.events;
18  
19  import java.util.ArrayList;
20  import java.util.List;
21  
22  import org.hipparchus.geometry.enclosing.EnclosingBall;
23  import org.hipparchus.geometry.euclidean.threed.Vector3D;
24  import org.hipparchus.geometry.spherical.twod.Edge;
25  import org.hipparchus.geometry.spherical.twod.S2Point;
26  import org.hipparchus.geometry.spherical.twod.Sphere2D;
27  import org.hipparchus.geometry.spherical.twod.SphericalPolygonsSet;
28  import org.hipparchus.geometry.spherical.twod.Vertex;
29  import org.hipparchus.ode.events.Action;
30  import org.hipparchus.util.FastMath;
31  import org.hipparchus.util.SinCos;
32  import org.orekit.bodies.BodyShape;
33  import org.orekit.bodies.GeodeticPoint;
34  import org.orekit.bodies.OneAxisEllipsoid;
35  import org.orekit.frames.Transform;
36  import org.orekit.geometry.fov.FieldOfView;
37  import org.orekit.models.earth.tessellation.DivertedSingularityAiming;
38  import org.orekit.models.earth.tessellation.EllipsoidTessellator;
39  import org.orekit.propagation.SpacecraftState;
40  import org.orekit.propagation.events.handlers.EventHandler;
41  import org.orekit.propagation.events.handlers.StopOnIncreasing;
42  
43  /** Detector triggered by geographical region entering/leaving a spacecraft sensor
44   * {@link FieldOfView Field Of View}.
45   * <p>
46   * This detector is a mix between to {@link FieldOfViewDetector} and {@link
47   * GeographicZoneDetector}. Similar to the first detector above, it triggers events
48   * related to entry/exit of targets in a Field Of View, taking attitude into account.
49   * Similar to the second detector above, its target is an entire geographic region
50   * (which can even be split in several non-connected patches and can have holes).
51   * </p>
52   * <p>
53   * This detector is typically used for ground observation missions with agile
54   * satellites than can look away from nadir.
55   * </p>
56   * <p>The default implementation behavior is to {@link Action#CONTINUE continue}
57   * propagation at FOV entry and to {@link Action#STOP stop} propagation
58   * at FOV exit. This can be changed by calling
59   * {@link #withHandler(EventHandler)} after construction.</p>
60   * @see org.orekit.propagation.Propagator#addEventDetector(EventDetector)
61   * @see FieldOfViewDetector
62   * @see GeographicZoneDetector
63   * @author Luc Maisonobe
64   * @since 7.1
65   */
66  public class FootprintOverlapDetector extends AbstractDetector<FootprintOverlapDetector> {
67  
68      /** Field of view. */
69      private final FieldOfView fov;
70  
71      /** Body on which the geographic zone is defined. */
72      private final OneAxisEllipsoid body;
73  
74      /** Geographic zone to consider. */
75      private final SphericalPolygonsSet zone;
76  
77      /** Linear step used for sampling the geographic zone. */
78      private final double samplingStep;
79  
80      /** Sampling of the geographic zone. */
81      private final List<SamplingPoint> sampledZone;
82  
83      /** Center of the spherical cap surrounding the zone. */
84      private final Vector3D capCenter;
85  
86      /** Cosine of the radius of the spherical cap surrounding the zone. */
87      private final double capCos;
88  
89      /** Sine of the radius of the spherical cap surrounding the zone. */
90      private final double capSin;
91  
92      /** Build a new instance.
93       * <p>The maximal interval between distance to FOV boundary checks should
94       * be smaller than the half duration of the minimal pass to handle,
95       * otherwise some short passes could be missed.</p>
96       * @param fov sensor field of view
97       * @param body body on which the geographic zone is defined
98       * @param zone geographic zone to consider
99       * @param samplingStep linear step used for sampling the geographic zone (in meters)
100      * @since 10.1
101      */
102     public FootprintOverlapDetector(final FieldOfView fov,
103                                     final OneAxisEllipsoid body,
104                                     final SphericalPolygonsSet zone,
105                                     final double samplingStep) {
106         this(DEFAULT_MAXCHECK, DEFAULT_THRESHOLD, DEFAULT_MAX_ITER,
107              new StopOnIncreasing<FootprintOverlapDetector>(),
108              fov, body, zone, samplingStep, sample(body, zone, samplingStep));
109     }
110 
111     /** Private constructor with full parameters.
112      * <p>
113      * This constructor is private as users are expected to use the builder
114      * API with the various {@code withXxx()} methods to set up the instance
115      * in a readable manner without using a huge amount of parameters.
116      * </p>
117      * @param maxCheck maximum checking interval (s)
118      * @param threshold convergence threshold (s)
119      * @param maxIter maximum number of iterations in the event time search
120      * @param handler event handler to call at event occurrences
121      * @param body body on which the geographic zone is defined
122      * @param zone geographic zone to consider
123      * @param fov sensor field of view
124      * @param sampledZone sampling of the geographic zone
125      * @param samplingStep linear step used for sampling the geographic zone (in meters)
126      */
127     private FootprintOverlapDetector(final double maxCheck, final double threshold,
128                                      final int maxIter, final EventHandler<? super FootprintOverlapDetector> handler,
129                                      final FieldOfView fov,
130                                      final OneAxisEllipsoid body,
131                                      final SphericalPolygonsSet zone,
132                                      final double samplingStep,
133                                      final List<SamplingPoint> sampledZone) {
134 
135         super(maxCheck, threshold, maxIter, handler);
136         this.fov          = fov;
137         this.body         = body;
138         this.samplingStep = samplingStep;
139         this.zone         = zone;
140         this.sampledZone  = sampledZone;
141 
142         final EnclosingBall<Sphere2D, S2Point> cap = zone.getEnclosingCap();
143         final SinCos sc = FastMath.sinCos(cap.getRadius());
144         this.capCenter    = cap.getCenter().getVector();
145         this.capCos       = sc.cos();
146         this.capSin       = sc.sin();
147 
148     }
149 
150     /** Sample the region.
151      * @param body body on which the geographic zone is defined
152      * @param zone geographic zone to consider
153      * @param samplingStep  linear step used for sampling the geographic zone (in meters)
154      * @return sampling points
155      */
156     private static List<SamplingPoint> sample(final OneAxisEllipsoid body,
157                                               final SphericalPolygonsSet zone,
158                                               final double samplingStep) {
159 
160         final List<SamplingPoint> sampledZone = new ArrayList<SamplingPoint>();
161 
162         // sample the zone boundary
163         final List<Vertex> boundary = zone.getBoundaryLoops();
164         for (final Vertex loopStart : boundary) {
165             int count = 0;
166             for (Vertex v = loopStart; count == 0 || v != loopStart; v = v.getOutgoing().getEnd()) {
167                 ++count;
168                 final Edge edge = v.getOutgoing();
169                 final int n = (int) FastMath.ceil(edge.getLength() * body.getEquatorialRadius() / samplingStep);
170                 for (int i = 0; i < n; ++i) {
171                     final S2Point intermediate = new S2Point(edge.getPointAt(i * edge.getLength() / n));
172                     final GeodeticPoint gp = new GeodeticPoint(0.5 * FastMath.PI - intermediate.getPhi(),
173                                                                intermediate.getTheta(), 0.0);
174                     sampledZone.add(new SamplingPoint(body.transform(gp), gp.getZenith()));
175                 }
176             }
177         }
178 
179         // sample the zone interior
180         final EllipsoidTessellator tessellator =
181                         new EllipsoidTessellator(body, new DivertedSingularityAiming(zone), 1);
182         final List<List<GeodeticPoint>> gpSample = tessellator.sample(zone, samplingStep, samplingStep);
183         for (final List<GeodeticPoint> list : gpSample) {
184             for (final GeodeticPoint gp : list) {
185                 sampledZone.add(new SamplingPoint(body.transform(gp), gp.getZenith()));
186             }
187         }
188 
189         return sampledZone;
190 
191     }
192 
193     /** {@inheritDoc} */
194     @Override
195     protected FootprintOverlapDetector create(final double newMaxCheck, final double newThreshold,
196                                               final int newMaxIter,
197                                               final EventHandler<? super FootprintOverlapDetector> newHandler) {
198         return new FootprintOverlapDetector(newMaxCheck, newThreshold, newMaxIter, newHandler,
199                                             fov, body, zone, samplingStep, sampledZone);
200     }
201 
202     /** Get the geographic zone triggering the events.
203      * <p>
204      * The zone is mapped on the unit sphere
205      * </p>
206      * @return geographic zone triggering the events
207      */
208     public SphericalPolygonsSet getZone() {
209         return zone;
210     }
211 
212     /** Get the Field Of View.
213      * @return Field Of View
214      * @since 10.1
215      */
216     public FieldOfView getFOV() {
217         return fov;
218     }
219 
220     /** Get the body on which the geographic zone is defined.
221      * @return body on which the geographic zone is defined
222      */
223     public BodyShape getBody() {
224         return body;
225     }
226 
227     /** {@inheritDoc}
228      * <p>
229      * The g function value is the minimum offset among the region points
230      * with respect to the Field Of View boundary. It is positive if all region
231      * points are outside of the Field Of View, and negative if at least some
232      * of the region points are inside of the Field Of View. The minimum is
233      * computed by sampling the region, considering only the points for which
234      * the spacecraft is above the horizon. The accuracy of the detection
235      * depends on the linear sampling step set at detector construction. If
236      * the spacecraft is below horizon for all region points, an arbitrary
237      * positive value is returned.
238      * </p>
239      * <p>
240      * As per the previous definition, when the region enters the Field Of
241      * View, a decreasing event is generated, and when the region leaves
242      * the Field Of View, an increasing event is generated.
243      * </p>
244      */
245     public double g(final SpacecraftState s) {
246 
247         // initial arbitrary positive value
248         double value = FastMath.PI;
249 
250         // get spacecraft position in body frame
251         final Vector3D      scBody      = s.getPVCoordinates(body.getBodyFrame()).getPosition();
252 
253         // map the point to a sphere
254         final GeodeticPoint gp          = body.transform(scBody, body.getBodyFrame(), s.getDate());
255         final S2Point       s2p         = new S2Point(gp.getLongitude(), 0.5 * FastMath.PI - gp.getLatitude());
256 
257         // for faster computation, we start using only the surrounding cap, to filter out
258         // far away points (which correspond to most of the points if the zone is small)
259         final Vector3D p   = s2p.getVector();
260         final double   dot = Vector3D.dotProduct(p, capCenter);
261         if (dot < capCos) {
262             // the spacecraft is outside of the cap, look for the closest cap point
263             final Vector3D t     = p.subtract(dot, capCenter).normalize();
264             final Vector3D close = new Vector3D(capCos, capCenter, capSin, t);
265             if (Vector3D.dotProduct(p, close) < -0.01) {
266                 // the spacecraft is not visible from the cap edge,
267                 // even taking some margin into account for sphere/ellipsoid different shapes
268                 // this induces no points in the zone can see the spacecraft,
269                 // we can return the arbitrary initial positive value without performing further computation
270                 return value;
271             }
272         }
273 
274         // the spacecraft may be visible from some points in the zone, check them all
275         final Transform bodyToSc = new Transform(s.getDate(),
276                                                  body.getBodyFrame().getTransformTo(s.getFrame(), s.getDate()),
277                                                  s.toTransform());
278         for (final SamplingPoint point : sampledZone) {
279             final Vector3D lineOfSightBody = point.getPosition().subtract(scBody);
280             if (Vector3D.dotProduct(lineOfSightBody, point.getZenith()) <= 0) {
281                 // spacecraft is above this sample point local horizon
282                 // get line of sight in spacecraft frame
283                 final double offset = fov.offsetFromBoundary(bodyToSc.transformVector(lineOfSightBody),
284                                                              0.0, VisibilityTrigger.VISIBLE_ONLY_WHEN_FULLY_IN_FOV);
285                 value = FastMath.min(value, offset);
286             }
287         }
288 
289         return value;
290 
291     }
292 
293     /** Container for sampling points. */
294     private static class SamplingPoint {
295 
296         /** Position of the point. */
297         private final Vector3D position;
298 
299         /** Zenith vector of the point. */
300         private final Vector3D zenith;
301 
302         /** Simple constructor.
303          * @param position position of the point
304          * @param zenith zenith vector of the point
305          */
306         SamplingPoint(final Vector3D position, final Vector3D zenith) {
307             this.position = position;
308             this.zenith   = zenith;
309         }
310 
311         /** Get the point position.
312          * @return point position
313          */
314         public Vector3D getPosition() {
315             return position;
316         }
317 
318         /** Get the point zenith vector.
319          * @return point zenith vector
320          */
321         public Vector3D getZenith() {
322             return zenith;
323         }
324 
325     }
326 
327 }