1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.events;
18
19 import org.hipparchus.Field;
20 import org.hipparchus.CalculusFieldElement;
21 import org.hipparchus.analysis.UnivariateFunction;
22 import org.hipparchus.analysis.solvers.BracketedUnivariateSolver;
23 import org.hipparchus.analysis.solvers.BracketedUnivariateSolver.Interval;
24 import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
25 import org.hipparchus.exception.MathRuntimeException;
26 import org.hipparchus.ode.events.Action;
27 import org.hipparchus.util.FastMath;
28 import org.hipparchus.util.Precision;
29 import org.orekit.errors.OrekitException;
30 import org.orekit.errors.OrekitInternalError;
31 import org.orekit.errors.OrekitMessages;
32 import org.orekit.propagation.FieldSpacecraftState;
33 import org.orekit.propagation.sampling.FieldOrekitStepInterpolator;
34 import org.orekit.time.FieldAbsoluteDate;
35
36 /** This class handles the state for one {@link FieldEventDetector
37 * event detector} during integration steps.
38 *
39 * <p>This class is heavily based on the class with the same name from the
40 * Hipparchus library. The changes performed consist in replacing
41 * raw types (double and double arrays) with space dynamics types
42 * ({@link FieldAbsoluteDate}, {@link FieldSpacecraftState}).</p>
43 * <p>Each time the propagator proposes a step, the event detector
44 * should be checked. This class handles the state of one detector
45 * during one propagation step, with references to the state at the
46 * end of the preceding step. This information is used to determine if
47 * the detector should trigger an event or not during the proposed
48 * step (and hence the step should be reduced to ensure the event
49 * occurs at a bound rather than inside the step).</p>
50 * @author Luc Maisonobe
51 * @param <D> class type for the generic version
52 */
53 public class FieldEventState<D extends FieldEventDetector<T>, T extends CalculusFieldElement<T>> {
54
55 /** Event detector. */
56 private D detector;
57
58 /** Time of the previous call to g. */
59 private FieldAbsoluteDate<T> lastT;
60
61 /** Value from the previous call to g. */
62 private T lastG;
63
64 /** Time at the beginning of the step. */
65 private FieldAbsoluteDate<T> t0;
66
67 /** Value of the event detector at the beginning of the step. */
68 private T g0;
69
70 /** Simulated sign of g0 (we cheat when crossing events). */
71 private boolean g0Positive;
72
73 /** Indicator of event expected during the step. */
74 private boolean pendingEvent;
75
76 /** Occurrence time of the pending event. */
77 private FieldAbsoluteDate<T> pendingEventTime;
78
79 /**
80 * Time to stop propagation if the event is a stop event. Used to enable stopping at
81 * an event and then restarting after that event.
82 */
83 private FieldAbsoluteDate<T> stopTime;
84
85 /** Time after the current event. */
86 private FieldAbsoluteDate<T> afterEvent;
87
88 /** Value of the g function after the current event. */
89 private T afterG;
90
91 /** The earliest time considered for events. */
92 private FieldAbsoluteDate<T> earliestTimeConsidered;
93
94 /** Integration direction. */
95 private boolean forward;
96
97 /** Variation direction around pending event.
98 * (this is considered with respect to the integration direction)
99 */
100 private boolean increasing;
101
102 /** Simple constructor.
103 * @param detector monitored event detector
104 */
105 public FieldEventState(final D detector) {
106
107 this.detector = detector;
108
109 // some dummy values ...
110 final Field<T> field = detector.getMaxCheckInterval().getField();
111 final T nan = field.getZero().add(Double.NaN);
112 lastT = FieldAbsoluteDate.getPastInfinity(field);
113 lastG = nan;
114 t0 = null;
115 g0 = nan;
116 g0Positive = true;
117 pendingEvent = false;
118 pendingEventTime = null;
119 stopTime = null;
120 increasing = true;
121 earliestTimeConsidered = null;
122 afterEvent = null;
123 afterG = nan;
124
125 }
126
127 /** Get the underlying event detector.
128 * @return underlying event detector
129 */
130 public D getEventDetector() {
131 return detector;
132 }
133
134 /** Initialize event handler at the start of a propagation.
135 * <p>
136 * This method is called once at the start of the propagation. It
137 * may be used by the event handler to initialize some internal data
138 * if needed.
139 * </p>
140 * @param s0 initial state
141 * @param t target time for the integration
142 *
143 */
144 public void init(final FieldSpacecraftState<T> s0,
145 final FieldAbsoluteDate<T> t) {
146 detector.init(s0, t);
147 final Field<T> field = detector.getMaxCheckInterval().getField();
148 lastT = FieldAbsoluteDate.getPastInfinity(field);
149 lastG = field.getZero().add(Double.NaN);
150 }
151
152 /** Compute the value of the switching function.
153 * This function must be continuous (at least in its roots neighborhood),
154 * as the integrator will need to find its roots to locate the events.
155 * @param s the current state information: date, kinematics, attitude
156 * @return value of the switching function
157 */
158 private T g(final FieldSpacecraftState<T> s) {
159 if (!s.getDate().equals(lastT)) {
160 lastT = s.getDate();
161 lastG = detector.g(s);
162 }
163 return lastG;
164 }
165
166 /** Reinitialize the beginning of the step.
167 * @param interpolator interpolator valid for the current step
168 */
169 public void reinitializeBegin(final FieldOrekitStepInterpolator<T> interpolator) {
170 forward = interpolator.isForward();
171 final FieldSpacecraftState<T> s0 = interpolator.getPreviousState();
172 this.t0 = s0.getDate();
173 g0 = g(s0);
174 while (g0.getReal() == 0) {
175 // extremely rare case: there is a zero EXACTLY at interval start
176 // we will use the sign slightly after step beginning to force ignoring this zero
177 // try moving forward by half a convergence interval
178 final T dt = detector.getThreshold().multiply(forward ? 0.5 : -0.5);
179 FieldAbsoluteDate<T> startDate = t0.shiftedBy(dt);
180 // if convergence is too small move an ulp
181 if (t0.equals(startDate)) {
182 startDate = nextAfter(startDate);
183 }
184 t0 = startDate;
185 g0 = g(interpolator.getInterpolatedState(t0));
186 }
187 g0Positive = g0.getReal() > 0;
188 // "last" event was increasing
189 increasing = g0Positive;
190 }
191
192 /** Evaluate the impact of the proposed step on the event detector.
193 * @param interpolator step interpolator for the proposed step
194 * @return true if the event detector triggers an event before
195 * the end of the proposed step (this implies the step should be
196 * rejected)
197 * @exception MathRuntimeException if an event cannot be located
198 */
199 public boolean evaluateStep(final FieldOrekitStepInterpolator<T> interpolator)
200 throws MathRuntimeException {
201 forward = interpolator.isForward();
202 final FieldSpacecraftState<T> s1 = interpolator.getCurrentState();
203 final FieldAbsoluteDate<T> t1 = s1.getDate();
204 final T dt = t1.durationFrom(t0);
205 if (FastMath.abs(dt.getReal()) < detector.getThreshold().getReal()) {
206 // we cannot do anything on such a small step, don't trigger any events
207 return false;
208 }
209 // number of points to check in the current step
210 final int n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt.getReal()) / detector.getMaxCheckInterval().getReal()));
211 final T h = dt.divide(n);
212
213
214 FieldAbsoluteDate<T> ta = t0;
215 T ga = g0;
216 for (int i = 0; i < n; ++i) {
217
218 // evaluate handler value at the end of the substep
219 final FieldAbsoluteDate<T> tb = (i == n - 1) ? t1 : t0.shiftedBy(h.multiply(i + 1));
220 final T gb = g(interpolator.getInterpolatedState(tb));
221
222 // check events occurrence
223 if (gb.getReal() == 0.0 || (g0Positive ^ (gb.getReal() > 0))) {
224 // there is a sign change: an event is expected during this step
225 if (findRoot(interpolator, ta, ga, tb, gb)) {
226 return true;
227 }
228 } else {
229 // no sign change: there is no event for now
230 ta = tb;
231 ga = gb;
232 }
233 }
234
235 // no event during the whole step
236 pendingEvent = false;
237 pendingEventTime = null;
238 return false;
239
240 }
241
242 /**
243 * Find a root in a bracketing interval.
244 *
245 * <p> When calling this method one of the following must be true. Either ga == 0, gb
246 * == 0, (ga < 0 and gb > 0), or (ga > 0 and gb < 0).
247 *
248 * @param interpolator that covers the interval.
249 * @param ta earliest possible time for root.
250 * @param ga g(ta).
251 * @param tb latest possible time for root.
252 * @param gb g(tb).
253 * @return if a zero crossing was found.
254 */
255 private boolean findRoot(final FieldOrekitStepInterpolator<T> interpolator,
256 final FieldAbsoluteDate<T> ta, final T ga,
257 final FieldAbsoluteDate<T> tb, final T gb) {
258
259 final T zero = ga.getField().getZero();
260
261 // check there appears to be a root in [ta, tb]
262 check(ga.getReal() == 0.0 || gb.getReal() == 0.0 || ga.getReal() > 0.0 && gb.getReal() < 0.0 || ga.getReal() < 0.0 && gb.getReal() > 0.0);
263 final T convergence = detector.getThreshold();
264 final int maxIterationCount = detector.getMaxIterationCount();
265 final BracketedUnivariateSolver<UnivariateFunction> solver =
266 new BracketingNthOrderBrentSolver(0, convergence.getReal(), 0, 5);
267
268 // event time, just at or before the actual root.
269 FieldAbsoluteDate<T> beforeRootT = null;
270 T beforeRootG = zero.add(Double.NaN);
271 // time on the other side of the root.
272 // Initialized the the loop below executes once.
273 FieldAbsoluteDate<T> afterRootT = ta;
274 T afterRootG = zero;
275
276 // check for some conditions that the root finders don't like
277 // these conditions cannot not happen in the loop below
278 // the ga == 0.0 case is handled by the loop below
279 if (ta.equals(tb)) {
280 // both non-zero but times are the same. Probably due to reset state
281 beforeRootT = ta;
282 beforeRootG = ga;
283 afterRootT = shiftedBy(beforeRootT, convergence);
284 afterRootG = g(interpolator.getInterpolatedState(afterRootT));
285 } else if (ga.getReal() != 0.0 && gb.getReal() == 0.0) {
286 // hard: ga != 0.0 and gb == 0.0
287 // look past gb by up to convergence to find next sign
288 // throw an exception if g(t) = 0.0 in [tb, tb + convergence]
289 beforeRootT = tb;
290 beforeRootG = gb;
291 afterRootT = shiftedBy(beforeRootT, convergence);
292 afterRootG = g(interpolator.getInterpolatedState(afterRootT));
293 } else if (ga.getReal() != 0.0) {
294 final T newGa = g(interpolator.getInterpolatedState(ta));
295 if (ga.getReal() > 0 != newGa.getReal() > 0) {
296 // both non-zero, step sign change at ta, possibly due to reset state
297 beforeRootT = ta;
298 beforeRootG = newGa;
299 afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb);
300 afterRootG = g(interpolator.getInterpolatedState(afterRootT));
301 }
302 }
303 // loop to skip through "fake" roots, i.e. where g(t) = g'(t) = 0.0
304 // executed once if we didn't hit a special case above
305 FieldAbsoluteDate<T> loopT = ta;
306 T loopG = ga;
307 while ((afterRootG.getReal() == 0.0 || afterRootG.getReal() > 0.0 == g0Positive) &&
308 strictlyAfter(afterRootT, tb)) {
309 if (loopG.getReal() == 0.0) {
310 // ga == 0.0 and gb may or may not be 0.0
311 // handle the root at ta first
312 beforeRootT = loopT;
313 beforeRootG = loopG;
314 afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb);
315 afterRootG = g(interpolator.getInterpolatedState(afterRootT));
316 } else {
317 // both non-zero, the usual case, use a root finder.
318 // time zero for evaluating the function f. Needs to be final
319 final FieldAbsoluteDate<T> fT0 = loopT;
320 final UnivariateFunction f = dt -> {
321 return g(interpolator.getInterpolatedState(fT0.shiftedBy(dt))).getReal();
322 };
323 // tb as a double for use in f
324 final T tbDouble = tb.durationFrom(fT0);
325 if (forward) {
326 try {
327 final Interval interval =
328 solver.solveInterval(maxIterationCount, f, 0, tbDouble.getReal());
329 beforeRootT = fT0.shiftedBy(interval.getLeftAbscissa());
330 beforeRootG = zero.add(interval.getLeftValue());
331 afterRootT = fT0.shiftedBy(interval.getRightAbscissa());
332 afterRootG = zero.add(interval.getRightValue());
333 // CHECKSTYLE: stop IllegalCatch check
334 } catch (RuntimeException e) {
335 // CHECKSTYLE: resume IllegalCatch check
336 throw new OrekitException(e, OrekitMessages.FIND_ROOT,
337 detector, loopT, loopG, tb, gb, lastT, lastG);
338 }
339 } else {
340 try {
341 final Interval interval =
342 solver.solveInterval(maxIterationCount, f, tbDouble.getReal(), 0);
343 beforeRootT = fT0.shiftedBy(interval.getRightAbscissa());
344 beforeRootG = zero.add(interval.getRightValue());
345 afterRootT = fT0.shiftedBy(interval.getLeftAbscissa());
346 afterRootG = zero.add(interval.getLeftValue());
347 // CHECKSTYLE: stop IllegalCatch check
348 } catch (RuntimeException e) {
349 // CHECKSTYLE: resume IllegalCatch check
350 throw new OrekitException(e, OrekitMessages.FIND_ROOT,
351 detector, tb, gb, loopT, loopG, lastT, lastG);
352 }
353 }
354 }
355 // tolerance is set to less than 1 ulp
356 // assume tolerance is 1 ulp
357 if (beforeRootT.equals(afterRootT)) {
358 afterRootT = nextAfter(afterRootT);
359 afterRootG = g(interpolator.getInterpolatedState(afterRootT));
360 }
361 // check loop is making some progress
362 check(forward && afterRootT.compareTo(beforeRootT) > 0 ||
363 !forward && afterRootT.compareTo(beforeRootT) < 0);
364 // setup next iteration
365 loopT = afterRootT;
366 loopG = afterRootG;
367 }
368
369 // figure out the result of root finding, and return accordingly
370 if (afterRootG.getReal() == 0.0 || afterRootG.getReal() > 0.0 == g0Positive) {
371 // loop gave up and didn't find any crossing within this step
372 return false;
373 } else {
374 // real crossing
375 check(beforeRootT != null && !Double.isNaN(beforeRootG.getReal()));
376 // variation direction, with respect to the integration direction
377 increasing = !g0Positive;
378 pendingEventTime = beforeRootT;
379 stopTime = beforeRootG.getReal() == 0.0 ? beforeRootT : afterRootT;
380 pendingEvent = true;
381 afterEvent = afterRootT;
382 afterG = afterRootG;
383
384 // check increasing set correctly
385 check(afterG.getReal() > 0 == increasing);
386 check(increasing == gb.getReal() >= ga.getReal());
387
388 return true;
389 }
390
391 }
392
393 /**
394 * Get the next number after the given number in the current propagation direction.
395 *
396 * @param t input time
397 * @return t +/- 1 ulp depending on the direction.
398 */
399 private FieldAbsoluteDate<T> nextAfter(final FieldAbsoluteDate<T> t) {
400 return t.shiftedBy(forward ? +Precision.EPSILON : -Precision.EPSILON);
401 }
402
403
404 /** Get the occurrence time of the event triggered in the current
405 * step.
406 * @return occurrence time of the event triggered in the current
407 * step.
408 */
409 public FieldAbsoluteDate<T> getEventDate() {
410 return pendingEventTime;
411 }
412
413 /**
414 * Try to accept the current history up to the given time.
415 *
416 * <p> It is not necessary to call this method before calling {@link
417 * #doEvent(FieldSpacecraftState)} with the same state. It is necessary to call this
418 * method before you call {@link #doEvent(FieldSpacecraftState)} on some other event
419 * detector.
420 *
421 * @param state to try to accept.
422 * @param interpolator to use to find the new root, if any.
423 * @return if the event detector has an event it has not detected before that is on or
424 * before the same time as {@code state}. In other words {@code false} means continue
425 * on while {@code true} means stop and handle my event first.
426 */
427 public boolean tryAdvance(final FieldSpacecraftState<T> state,
428 final FieldOrekitStepInterpolator<T> interpolator) {
429 final FieldAbsoluteDate<T> t = state.getDate();
430 // check this is only called before a pending event.
431 check(!pendingEvent || !strictlyAfter(pendingEventTime, t));
432
433 final boolean meFirst;
434
435 if (strictlyAfter(t, earliestTimeConsidered)) {
436 // just found an event and we know the next time we want to search again
437 meFirst = false;
438 } else {
439 // check g function to see if there is a new event
440 final T g = g(state);
441 final boolean positive = g.getReal() > 0;
442
443 if (positive == g0Positive) {
444 // g function has expected sign
445 g0 = g; // g0Positive is the same
446 meFirst = false;
447 } else {
448 // found a root we didn't expect -> find precise location
449 final FieldAbsoluteDate<T> oldPendingEventTime = pendingEventTime;
450 final boolean foundRoot = findRoot(interpolator, t0, g0, t, g);
451 // make sure the new root is not the same as the old root, if one exists
452 meFirst = foundRoot && !pendingEventTime.equals(oldPendingEventTime);
453 }
454 }
455
456 if (!meFirst) {
457 // advance t0 to the current time so we can't find events that occur before t
458 t0 = t;
459 }
460
461 return meFirst;
462 }
463
464 /**
465 * Notify the user's listener of the event. The event occurs wholly within this method
466 * call including a call to {@link FieldEventDetector#resetState(FieldSpacecraftState)}
467 * if necessary.
468 *
469 * @param state the state at the time of the event. This must be at the same time as
470 * the current value of {@link #getEventDate()}.
471 * @return the user's requested action and the new state if the action is {@link
472 * Action#RESET_STATE}. Otherwise
473 * the new state is {@code state}. The stop time indicates what time propagation should
474 * stop if the action is {@link Action#STOP}.
475 * This guarantees the integration will stop on or after the root, so that integration
476 * may be restarted safely.
477 */
478 public EventOccurrence<T> doEvent(final FieldSpacecraftState<T> state) {
479 // check event is pending and is at the same time
480 check(pendingEvent);
481 check(state.getDate().equals(this.pendingEventTime));
482
483 final Action action = detector.eventOccurred(state, increasing == forward);
484 final FieldSpacecraftState<T> newState;
485 if (action == Action.RESET_STATE) {
486 newState = detector.resetState(state);
487 } else {
488 newState = state;
489 }
490 // clear pending event
491 pendingEvent = false;
492 pendingEventTime = null;
493 // setup for next search
494 earliestTimeConsidered = afterEvent;
495 t0 = afterEvent;
496 g0 = afterG;
497 g0Positive = increasing;
498 // check g0Positive set correctly
499 check(g0.getReal() == 0.0 || g0Positive == g0.getReal() > 0);
500 return new EventOccurrence<T>(action, newState, stopTime);
501 }
502
503 /**
504 * Shift a time value along the current integration direction: {@link #forward}.
505 *
506 * @param t the time to shift.
507 * @param delta the amount to shift.
508 * @return t + delta if forward, else t - delta. If the result has to be rounded it
509 * will be rounded to be before the true value of t + delta.
510 */
511 private FieldAbsoluteDate<T> shiftedBy(final FieldAbsoluteDate<T> t, final T delta) {
512 if (forward) {
513 final FieldAbsoluteDate<T> ret = t.shiftedBy(delta);
514 if (ret.durationFrom(t).getReal() > delta.getReal()) {
515 return ret.shiftedBy(-Precision.EPSILON);
516 } else {
517 return ret;
518 }
519 } else {
520 final FieldAbsoluteDate<T> ret = t.shiftedBy(delta.negate());
521 if (t.durationFrom(ret).getReal() > delta.getReal()) {
522 return ret.shiftedBy(+Precision.EPSILON);
523 } else {
524 return ret;
525 }
526 }
527 }
528
529 /**
530 * Get the time that happens first along the current propagation direction: {@link
531 * #forward}.
532 *
533 * @param a first time
534 * @param b second time
535 * @return min(a, b) if forward, else max (a, b)
536 */
537 private FieldAbsoluteDate<T> minTime(final FieldAbsoluteDate<T> a, final FieldAbsoluteDate<T> b) {
538 return (forward ^ (a.compareTo(b) > 0)) ? a : b;
539 }
540
541 /**
542 * Check the ordering of two times.
543 *
544 * @param t1 the first time.
545 * @param t2 the second time.
546 * @return true if {@code t2} is strictly after {@code t1} in the propagation
547 * direction.
548 */
549 private boolean strictlyAfter(final FieldAbsoluteDate<T> t1, final FieldAbsoluteDate<T> t2) {
550 if (t1 == null || t2 == null) {
551 return false;
552 } else {
553 return forward ? t1.compareTo(t2) < 0 : t2.compareTo(t1) < 0;
554 }
555 }
556
557 /**
558 * Same as keyword assert, but throw a {@link MathRuntimeException}.
559 *
560 * @param condition to check
561 * @throws MathRuntimeException if {@code condition} is false.
562 */
563 private void check(final boolean condition) throws MathRuntimeException {
564 if (!condition) {
565 throw new OrekitInternalError(null);
566 }
567 }
568
569 /**
570 * Class to hold the data related to an event occurrence that is needed to decide how
571 * to modify integration.
572 */
573 public static class EventOccurrence<T extends CalculusFieldElement<T>> {
574
575 /** User requested action. */
576 private final Action action;
577 /** New state for a reset action. */
578 private final FieldSpacecraftState<T> newState;
579 /** The time to stop propagation if the action is a stop event. */
580 private final FieldAbsoluteDate<T> stopDate;
581
582 /**
583 * Create a new occurrence of an event.
584 *
585 * @param action the user requested action.
586 * @param newState for a reset event. Should be the current state unless the
587 * action is {@link Action#RESET_STATE}.
588 * @param stopDate to stop propagation if the action is {@link Action#STOP}. Used
589 * to move the stop time to just after the root.
590 */
591 EventOccurrence(final Action action,
592 final FieldSpacecraftState<T> newState,
593 final FieldAbsoluteDate<T> stopDate) {
594 this.action = action;
595 this.newState = newState;
596 this.stopDate = stopDate;
597 }
598
599 /**
600 * Get the user requested action.
601 *
602 * @return the action.
603 */
604 public Action getAction() {
605 return action;
606 }
607
608 /**
609 * Get the new state for a reset action.
610 *
611 * @return the new state.
612 */
613 public FieldSpacecraftState<T> getNewState() {
614 return newState;
615 }
616
617 /**
618 * Get the new time for a stop action.
619 *
620 * @return when to stop propagation.
621 */
622 public FieldAbsoluteDate<T> getStopDate() {
623 return stopDate;
624 }
625
626 }
627
628 /**Get PendingEvent.
629 * @return if there is a pending event or not
630 * */
631
632 public boolean getPendingEvent() {
633 return pendingEvent;
634 }
635
636 }