1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.analytical.gnss;
18  
19  import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
20  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
21  import org.hipparchus.geometry.euclidean.threed.Vector3D;
22  import org.hipparchus.util.FastMath;
23  import org.hipparchus.util.FieldSinCos;
24  import org.hipparchus.util.MathArrays;
25  import org.hipparchus.util.MathUtils;
26  import org.hipparchus.util.Precision;
27  import org.orekit.attitudes.AttitudeProvider;
28  import org.orekit.data.DataContext;
29  import org.orekit.errors.OrekitException;
30  import org.orekit.errors.OrekitMessages;
31  import org.orekit.frames.Frame;
32  import org.orekit.orbits.CartesianOrbit;
33  import org.orekit.orbits.Orbit;
34  import org.orekit.propagation.SpacecraftState;
35  import org.orekit.propagation.analytical.AbstractAnalyticalPropagator;
36  import org.orekit.propagation.analytical.gnss.data.GLONASSOrbitalElements;
37  import org.orekit.propagation.analytical.gnss.data.GNSSConstants;
38  import org.orekit.time.AbsoluteDate;
39  import org.orekit.time.GLONASSDate;
40  import org.orekit.time.TimeScale;
41  import org.orekit.utils.PVCoordinates;
42  
43  /**
44   * This class aims at propagating a GLONASS orbit from {@link GLONASSOrbitalElements}.
45   *
46   * @see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-General.-Edition-1.0-2016.pdf">
47   *       GLONASS Interface Control Document</a>
48   *
49   * @author Bryan Cazabonne
50   * @since 10.0
51   *
52   */
53  public class GLONASSAnalyticalPropagator extends AbstractAnalyticalPropagator {
54  
55      // Constants
56      /** Constant 7.0 / 3.0. */
57      private static final double SEVEN_THIRD = 7.0 / 3.0;
58  
59      /** Constant 7.0 / 6.0. */
60      private static final double SEVEN_SIXTH = 7.0 / 6.0;
61  
62      /** Constant 7.0 / 24.0. */
63      private static final double SEVEN_24TH = 7.0 / 24.0;
64  
65      /** Constant 49.0 / 72.0. */
66      private static final double FN_72TH = 49.0 / 72.0;
67  
68      /** Value of the earth's rotation rate in rad/s. */
69      private static final double GLONASS_AV = 7.2921150e-5;
70  
71      /** Mean value of inclination for Glonass orbit is equal to 63°. */
72      private static final double GLONASS_MEAN_INCLINATION = 64.8;
73  
74      /** Mean value of Draconian period for Glonass orbit is equal to 40544s : 11 hours 15 minutes 44 seconds. */
75      private static final double GLONASS_MEAN_DRACONIAN_PERIOD = 40544;
76  
77      /** Second degree zonal coefficient of normal potential. */
78      private static final double GLONASS_J20 = 1.08262575e-3;
79  
80      /** Equatorial radius of Earth (m). */
81      private static final double GLONASS_EARTH_EQUATORIAL_RADIUS = 6378136;
82  
83      // Data used to solve Kepler's equation
84      /** First coefficient to compute Kepler equation solver starter. */
85      private static final double A;
86  
87      /** Second coefficient to compute Kepler equation solver starter. */
88      private static final double B;
89  
90      static {
91          final double k1 = 3 * FastMath.PI + 2;
92          final double k2 = FastMath.PI - 1;
93          final double k3 = 6 * FastMath.PI - 1;
94          A  = 3 * k2 * k2 / k1;
95          B  = k3 * k3 / (6 * k1);
96      }
97  
98      /** The GLONASS orbital elements used. */
99      private final GLONASSOrbitalElements glonassOrbit;
100 
101     /** The spacecraft mass (kg). */
102     private final double mass;
103 
104     /** The ECI frame used for GLONASS propagation. */
105     private final Frame eci;
106 
107     /** The ECEF frame used for GLONASS propagation. */
108     private final Frame ecef;
109 
110     /** Data context for propagation. */
111     private final DataContext dataContext;
112 
113     /**
114      * Private constructor.
115      * @param glonassOrbit Glonass orbital elements
116      * @param eci Earth Centered Inertial frame
117      * @param ecef Earth Centered Earth Fixed frame
118      * @param provider Attitude provider
119      * @param mass Satellite mass (kg)
120      * @param context Data context
121      */
122     GLONASSAnalyticalPropagator(final GLONASSOrbitalElements glonassOrbit, final Frame eci,
123                                 final Frame ecef, final AttitudeProvider provider,
124                                 final double mass, final DataContext context) {
125         super(provider);
126         this.dataContext = context;
127         // Stores the GLONASS orbital elements
128         this.glonassOrbit = glonassOrbit;
129         // Sets the start date as the date of the orbital elements
130         setStartDate(glonassOrbit.getDate());
131         // Sets the mass
132         this.mass = mass;
133         // Sets the Earth Centered Inertial frame
134         this.eci  = eci;
135         // Sets the Earth Centered Earth Fixed frame
136         this.ecef = ecef;
137     }
138 
139     /**
140      * Gets the PVCoordinates of the GLONASS SV in {@link #getECEF() ECEF frame}.
141      *
142      * <p>The algorithm is defined at Appendix M.1 from GLONASS Interface Control Document,
143      * with automatic differentiation added to compute velocity and
144      * acceleration.</p>
145      *
146      * @param date the computation date
147      * @return the GLONASS SV PVCoordinates in {@link #getECEF() ECEF frame}
148      */
149     public PVCoordinates propagateInEcef(final AbsoluteDate date) {
150 
151         // Interval of prediction dTpr
152         final UnivariateDerivative2 dTpr = getdTpr(date);
153 
154         // Zero
155         final UnivariateDerivative2 zero = dTpr.getField().getZero();
156 
157         // The number of whole orbits "w" on a prediction interval
158         final UnivariateDerivative2 w = FastMath.floor(dTpr.divide(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT()));
159 
160         // Current inclination
161         final UnivariateDerivative2 i = zero.add(GLONASS_MEAN_INCLINATION / 180 * GNSSConstants.GLONASS_PI + glonassOrbit.getDeltaI());
162 
163         // Eccentricity
164         final UnivariateDerivative2 e = zero.add(glonassOrbit.getE());
165 
166         // Mean draconique period in orbite w+1 and mean motion
167         final UnivariateDerivative2 tDR = w.multiply(2.0).add(1.0).multiply(glonassOrbit.getDeltaTDot()).
168                                           add(glonassOrbit.getDeltaT()).
169                                           add(GLONASS_MEAN_DRACONIAN_PERIOD);
170         final UnivariateDerivative2 n = tDR.divide(2.0 * GNSSConstants.GLONASS_PI).reciprocal();
171 
172         // Semi-major axis : computed by successive approximation
173         final UnivariateDerivative2 sma = computeSma(tDR, i, e);
174 
175         // (ae / p)^2 term
176         final UnivariateDerivative2 p     = sma.multiply(e.multiply(e).negate().add(1.0));
177         final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
178         final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
179 
180         // Current longitude of the ascending node
181         final UnivariateDerivative2 lambda = computeLambda(dTpr, n, aeop2, i);
182 
183         // Current argument of perigee
184         final UnivariateDerivative2 pa = computePA(dTpr, n, aeop2, i);
185 
186         // Mean longitude at the instant the spacecraft passes the current ascending node
187         final UnivariateDerivative2 tanPAo2 = FastMath.tan(pa.divide(2.0));
188         final UnivariateDerivative2 coef    = tanPAo2.multiply(FastMath.sqrt(e.negate().add(1.0).divide(e.add(1.0))));
189         final UnivariateDerivative2 e0      = FastMath.atan(coef).multiply(2.0).negate();
190         final UnivariateDerivative2 m1      = pa.add(e0).subtract(FastMath.sin(e0).multiply(e));
191 
192         // Current mean longitude
193         final UnivariateDerivative2 correction = dTpr.
194                                                  subtract(w.multiply(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT())).
195                                                  subtract(w.multiply(w).multiply(glonassOrbit.getDeltaTDot()));
196         final UnivariateDerivative2 m = m1.add(n.multiply(correction));
197 
198         // Take into consideration the periodic perturbations
199         final FieldSinCos<UnivariateDerivative2> scPa = FastMath.sinCos(pa);
200         final UnivariateDerivative2 h = e.multiply(scPa.sin());
201         final UnivariateDerivative2 l = e.multiply(scPa.cos());
202         // δa1
203         final UnivariateDerivative2[] d1 = getParameterDifferentials(sma, i, h, l, m1);
204         // δa2
205         final UnivariateDerivative2[] d2 = getParameterDifferentials(sma, i, h, l, m);
206         // Apply corrections
207         final UnivariateDerivative2 smaCorr    = sma.add(d2[0]).subtract(d1[0]);
208         final UnivariateDerivative2 hCorr      = h.add(d2[1]).subtract(d1[1]);
209         final UnivariateDerivative2 lCorr      = l.add(d2[2]).subtract(d1[2]);
210         final UnivariateDerivative2 lambdaCorr = lambda.add(d2[3]).subtract(d1[3]);
211         final UnivariateDerivative2 iCorr      = i.add(d2[4]).subtract(d1[4]);
212         final UnivariateDerivative2 mCorr      = m.add(d2[5]).subtract(d1[5]);
213         final UnivariateDerivative2 eCorr      = FastMath.sqrt(hCorr.multiply(hCorr).add(lCorr.multiply(lCorr)));
214         final UnivariateDerivative2 paCorr;
215         if (eCorr.getValue() == 0.) {
216             paCorr = zero;
217         } else {
218             if (lCorr.getValue() == eCorr.getValue()) {
219                 paCorr = zero.add(0.5 * GNSSConstants.GLONASS_PI);
220             } else if (lCorr.getValue() == -eCorr.getValue()) {
221                 paCorr = zero.add(-0.5 * GNSSConstants.GLONASS_PI);
222             } else {
223                 paCorr = FastMath.atan2(hCorr, lCorr);
224             }
225         }
226 
227         // Eccentric Anomaly
228         final UnivariateDerivative2 mk = mCorr.subtract(paCorr);
229         final UnivariateDerivative2 ek = getEccentricAnomaly(mk, eCorr);
230 
231         // True Anomaly
232         final UnivariateDerivative2 vk =  getTrueAnomaly(ek, eCorr);
233 
234         // Argument of Latitude
235         final UnivariateDerivative2 phik = vk.add(paCorr);
236 
237         // Corrected Radius
238         final UnivariateDerivative2 pCorr = smaCorr.multiply(eCorr.multiply(eCorr).negate().add(1.0));
239         final UnivariateDerivative2 rk    = pCorr.divide(eCorr.multiply(FastMath.cos(vk)).add(1.0));
240 
241         // Positions in orbital plane
242         final FieldSinCos<UnivariateDerivative2> scPhik = FastMath.sinCos(phik);
243         final UnivariateDerivative2 xk = scPhik.cos().multiply(rk);
244         final UnivariateDerivative2 yk = scPhik.sin().multiply(rk);
245 
246         // Coordinates of position
247         final FieldSinCos<UnivariateDerivative2> scL = FastMath.sinCos(lambdaCorr);
248         final FieldSinCos<UnivariateDerivative2> scI = FastMath.sinCos(iCorr);
249         final FieldVector3D<UnivariateDerivative2> positionwithDerivatives =
250                         new FieldVector3D<>(xk.multiply(scL.cos()).subtract(yk.multiply(scL.sin()).multiply(scI.cos())),
251                                             xk.multiply(scL.sin()).add(yk.multiply(scL.cos()).multiply(scI.cos())),
252                                             yk.multiply(scI.sin()));
253 
254         return new PVCoordinates(new Vector3D(positionwithDerivatives.getX().getValue(),
255                                               positionwithDerivatives.getY().getValue(),
256                                               positionwithDerivatives.getZ().getValue()),
257                                  new Vector3D(positionwithDerivatives.getX().getFirstDerivative(),
258                                               positionwithDerivatives.getY().getFirstDerivative(),
259                                               positionwithDerivatives.getZ().getFirstDerivative()),
260                                  new Vector3D(positionwithDerivatives.getX().getSecondDerivative(),
261                                               positionwithDerivatives.getY().getSecondDerivative(),
262                                               positionwithDerivatives.getZ().getSecondDerivative()));
263     }
264 
265     /**
266      * Gets eccentric anomaly from mean anomaly.
267      * <p>The algorithm used to solve the Kepler equation has been published in:
268      * "Procedures for  solving Kepler's Equation", A. W. Odell and R. H. Gooding,
269      * Celestial Mechanics 38 (1986) 307-334</p>
270      * <p>It has been copied from the OREKIT library (KeplerianOrbit class).</p>
271      *
272      * @param mk the mean anomaly (rad)
273      * @param e the eccentricity
274      * @return the eccentric anomaly (rad)
275      */
276     private UnivariateDerivative2 getEccentricAnomaly(final UnivariateDerivative2 mk, final UnivariateDerivative2 e) {
277 
278         // reduce M to [-PI PI] interval
279         final UnivariateDerivative2 reducedM = new UnivariateDerivative2(MathUtils.normalizeAngle(mk.getValue(), 0.0),
280                                                                          mk.getFirstDerivative(),
281                                                                          mk.getSecondDerivative());
282 
283         // compute start value according to A. W. Odell and R. H. Gooding S12 starter
284         UnivariateDerivative2 ek;
285         if (FastMath.abs(reducedM.getValue()) < 1.0 / 6.0) {
286             if (FastMath.abs(reducedM.getValue()) < Precision.SAFE_MIN) {
287                 // this is an Orekit change to the S12 starter.
288                 // If reducedM is 0.0, the derivative of cbrt is infinite which induces NaN appearing later in
289                 // the computation. As in this case E and M are almost equal, we initialize ek with reducedM
290                 ek = reducedM;
291             } else {
292                 // this is the standard S12 starter
293                 ek = reducedM.add(reducedM.multiply(6).cbrt().subtract(reducedM).multiply(e));
294             }
295         } else {
296             if (reducedM.getValue() < 0) {
297                 final UnivariateDerivative2 w = reducedM.add(FastMath.PI);
298                 ek = reducedM.add(w.multiply(-A).divide(w.subtract(B)).subtract(FastMath.PI).subtract(reducedM).multiply(e));
299             } else {
300                 final UnivariateDerivative2 minusW = reducedM.subtract(FastMath.PI);
301                 ek = reducedM.add(minusW.multiply(A).divide(minusW.add(B)).add(FastMath.PI).subtract(reducedM).multiply(e));
302             }
303         }
304 
305         final UnivariateDerivative2 e1 = e.negate().add(1.0);
306         final boolean noCancellationRisk = (e1.getValue() + ek.getValue() * ek.getValue() / 6) >= 0.1;
307 
308         // perform two iterations, each consisting of one Halley step and one Newton-Raphson step
309         for (int j = 0; j < 2; ++j) {
310             final UnivariateDerivative2 f;
311             UnivariateDerivative2 fd;
312             final UnivariateDerivative2 fdd  = ek.sin().multiply(e);
313             final UnivariateDerivative2 fddd = ek.cos().multiply(e);
314             if (noCancellationRisk) {
315                 f  = ek.subtract(fdd).subtract(reducedM);
316                 fd = fddd.subtract(1).negate();
317             } else {
318                 f  = eMeSinE(ek, e).subtract(reducedM);
319                 final UnivariateDerivative2 s = ek.multiply(0.5).sin();
320                 fd = s.multiply(s).multiply(e.multiply(2.0)).add(e1);
321             }
322             final UnivariateDerivative2 dee = f.multiply(fd).divide(f.multiply(0.5).multiply(fdd).subtract(fd.multiply(fd)));
323 
324             // update eccentric anomaly, using expressions that limit underflow problems
325             final UnivariateDerivative2 w = fd.add(dee.multiply(0.5).multiply(fdd.add(dee.multiply(fdd).divide(3))));
326             fd = fd.add(dee.multiply(fdd.add(dee.multiply(0.5).multiply(fdd))));
327             ek = ek.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
328         }
329 
330         // expand the result back to original range
331         ek = ek.add(mk.getValue() - reducedM.getValue());
332 
333         // Returns the eccentric anomaly
334         return ek;
335     }
336 
337     /**
338      * Accurate computation of E - e sin(E).
339      *
340      * @param E eccentric anomaly
341      * @param ecc the eccentricity
342      * @return E - e sin(E)
343      */
344     private UnivariateDerivative2 eMeSinE(final UnivariateDerivative2 E, final UnivariateDerivative2 ecc) {
345         UnivariateDerivative2 x = E.sin().multiply(ecc.negate().add(1.0));
346         final UnivariateDerivative2 mE2 = E.negate().multiply(E);
347         UnivariateDerivative2 term = E;
348         UnivariateDerivative2 d    = E.getField().getZero();
349         // the inequality test below IS intentional and should NOT be replaced by a check with a small tolerance
350         for (UnivariateDerivative2 x0 = d.add(Double.NaN); !Double.valueOf(x.getValue()).equals(Double.valueOf(x0.getValue()));) {
351             d = d.add(2);
352             term = term.multiply(mE2.divide(d.multiply(d.add(1))));
353             x0 = x;
354             x = x.subtract(term);
355         }
356         return x;
357     }
358 
359     /** Gets true anomaly from eccentric anomaly.
360     *
361     * @param ek the eccentric anomaly (rad)
362     * @param ecc the eccentricity
363     * @return the true anomaly (rad)
364     */
365     private UnivariateDerivative2 getTrueAnomaly(final UnivariateDerivative2 ek, final UnivariateDerivative2 ecc) {
366         final UnivariateDerivative2 svk = ek.sin().multiply(FastMath.sqrt( ecc.multiply(ecc).negate().add(1.0)));
367         final UnivariateDerivative2 cvk = ek.cos().subtract(ecc);
368         return svk.atan2(cvk);
369     }
370 
371     /**
372      * Get the interval of prediction.
373      *
374      * @param date the considered date
375      * @return the duration from GLONASS orbit Reference epoch (s)
376      */
377     private UnivariateDerivative2 getdTpr(final AbsoluteDate date) {
378         final TimeScale glonass = dataContext.getTimeScales().getGLONASS();
379         final GLONASSDate tEnd = new GLONASSDate(date, glonass);
380         final GLONASSDate tSta = new GLONASSDate(glonassOrbit.getDate(), glonass);
381         final int n  = tEnd.getDayNumber();
382         final int na = tSta.getDayNumber();
383         final int deltaN;
384         if (na == 27) {
385             deltaN = n - na - FastMath.round((float) (n - na) / 1460) * 1460;
386         } else {
387             deltaN = n - na - FastMath.round((float) (n - na) / 1461) * 1461;
388         }
389         final UnivariateDerivative2 ti = new UnivariateDerivative2(tEnd.getSecInDay(), 1.0, 0.0);
390 
391         return ti.subtract(glonassOrbit.getTime()).add(86400 * deltaN);
392     }
393 
394     /**
395      * Computes the semi-major axis of orbit using technique of successive approximations.
396      * @param tDR mean draconique period (s)
397      * @param i current inclination (rad)
398      * @param e eccentricity
399      * @return the semi-major axis (m).
400      */
401     private UnivariateDerivative2 computeSma(final UnivariateDerivative2 tDR,
402                                              final UnivariateDerivative2 i,
403                                              final UnivariateDerivative2 e) {
404 
405         // Zero
406         final UnivariateDerivative2 zero = tDR.getField().getZero();
407 
408         // If one of the input parameter is equal to Double.NaN, an infinite loop can occur.
409         // In that case, we do not compute the value of the semi major axis.
410         // We decided to return a Double.NaN value instead.
411         if (Double.isNaN(tDR.getValue()) || Double.isNaN(i.getValue()) || Double.isNaN(e.getValue())) {
412             return zero.add(Double.NaN);
413         }
414 
415         // Common parameters
416         final UnivariateDerivative2 sinI         = FastMath.sin(i);
417         final UnivariateDerivative2 sin2I        = sinI.multiply(sinI);
418         final UnivariateDerivative2 ome2         = e.multiply(e).negate().add(1.0);
419         final UnivariateDerivative2 ome2Pow3o2   = FastMath.sqrt(ome2).multiply(ome2);
420         final UnivariateDerivative2 pa           = zero.add(glonassOrbit.getPa());
421         final UnivariateDerivative2 cosPA        = FastMath.cos(pa);
422         final UnivariateDerivative2 opecosPA     = e.multiply(cosPA).add(1.0);
423         final UnivariateDerivative2 opecosPAPow2 = opecosPA.multiply(opecosPA);
424         final UnivariateDerivative2 opecosPAPow3 = opecosPAPow2.multiply(opecosPA);
425 
426         // Initial approximation
427         UnivariateDerivative2 tOCK = tDR;
428 
429         // Successive approximations
430         // The process of approximation ends when fulfilling the following condition: |a(n+1) - a(n)| < 1cm
431         UnivariateDerivative2 an   = zero;
432         UnivariateDerivative2 anp1 = zero;
433         boolean isLastStep = false;
434         while (!isLastStep) {
435 
436             // a(n+1) computation
437             final UnivariateDerivative2 tOCKo2p     = tOCK.divide(2.0 * GNSSConstants.GLONASS_PI);
438             final UnivariateDerivative2 tOCKo2pPow2 = tOCKo2p.multiply(tOCKo2p);
439             anp1 = FastMath.cbrt(tOCKo2pPow2.multiply(GNSSConstants.GLONASS_MU));
440 
441             // p(n+1) computation
442             final UnivariateDerivative2 p = anp1.multiply(ome2);
443 
444             // Tock(n+1) computation
445             final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
446             final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
447             final UnivariateDerivative2 term1 = aeop2.multiply(GLONASS_J20).multiply(1.5);
448             final UnivariateDerivative2 term2 = sin2I.multiply(2.5).negate().add(2.0);
449             final UnivariateDerivative2 term3 = ome2Pow3o2.divide(opecosPAPow2);
450             final UnivariateDerivative2 term4 = opecosPAPow3.divide(ome2);
451             tOCK = tDR.divide(term1.multiply(term2.multiply(term3).add(term4)).negate().add(1.0));
452 
453             // Check convergence
454             if (FastMath.abs(anp1.subtract(an).getReal()) <= 0.01) {
455                 isLastStep = true;
456             }
457 
458             an = anp1;
459         }
460 
461         return an;
462 
463     }
464 
465     /**
466      * Computes the current longitude of the ascending node.
467      * @param dTpr interval of prediction (s)
468      * @param n mean motion (rad/s)
469      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
470      * @param i inclination (rad)
471      * @return the current longitude of the ascending node (rad)
472      */
473     private UnivariateDerivative2 computeLambda(final UnivariateDerivative2 dTpr,
474                                                 final UnivariateDerivative2 n,
475                                                 final UnivariateDerivative2 aeop2,
476                                                 final UnivariateDerivative2 i) {
477         final UnivariateDerivative2 cosI = FastMath.cos(i);
478         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cosI).multiply(1.5 * GLONASS_J20);
479         return dTpr.multiply(precession.add(GLONASS_AV)).negate().add(glonassOrbit.getLambda());
480     }
481 
482     /**
483      * Computes the current argument of perigee.
484      * @param dTpr interval of prediction (s)
485      * @param n mean motion (rad/s)
486      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
487      * @param i inclination (rad)
488      * @return the current argument of perigee (rad)
489      */
490     private UnivariateDerivative2 computePA(final UnivariateDerivative2 dTpr,
491                                             final UnivariateDerivative2 n,
492                                             final UnivariateDerivative2 aeop2,
493                                             final UnivariateDerivative2 i) {
494         final UnivariateDerivative2 cosI  = FastMath.cos(i);
495         final UnivariateDerivative2 cos2I = cosI.multiply(cosI);
496         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cos2I.multiply(5.0).negate().add(1.0)).multiply(0.75 * GLONASS_J20);
497         return dTpr.multiply(precession).negate().add(glonassOrbit.getPa());
498     }
499 
500     /**
501      * Computes the differentials δa<sub>i</sub>.
502      * <p>
503      * The value of i depends of the type of longitude (i = 2 for the current mean longitude;
504      * i = 1 for the mean longitude at the instant the spacecraft passes the current ascending node)
505      * </p>
506      * @param a semi-major axis (m)
507      * @param i inclination (rad)
508      * @param h x component of the eccentricity (rad)
509      * @param l y component of the eccentricity (rad)
510      * @param m longitude (current or at the ascending node instant)
511      * @return the differentials of the orbital parameters
512      */
513     private UnivariateDerivative2[] getParameterDifferentials(final UnivariateDerivative2 a, final UnivariateDerivative2 i,
514                                                               final UnivariateDerivative2 h, final UnivariateDerivative2 l,
515                                                               final UnivariateDerivative2 m) {
516 
517         // B constant
518         final UnivariateDerivative2 aeoa  = a.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
519         final UnivariateDerivative2 aeoa2 = aeoa.multiply(aeoa);
520         final UnivariateDerivative2 b     = aeoa2.multiply(1.5 * GLONASS_J20);
521 
522         // Commons Parameters
523         final FieldSinCos<UnivariateDerivative2> scI   = FastMath.sinCos(i);
524         final FieldSinCos<UnivariateDerivative2> scLk  = FastMath.sinCos(m);
525         final FieldSinCos<UnivariateDerivative2> sc2Lk = FieldSinCos.sum(scLk, scLk);
526         final FieldSinCos<UnivariateDerivative2> sc3Lk = FieldSinCos.sum(scLk, sc2Lk);
527         final FieldSinCos<UnivariateDerivative2> sc4Lk = FieldSinCos.sum(sc2Lk, sc2Lk);
528         final UnivariateDerivative2 cosI   = scI.cos();
529         final UnivariateDerivative2 sinI   = scI.sin();
530         final UnivariateDerivative2 cosI2  = cosI.multiply(cosI);
531         final UnivariateDerivative2 sinI2  = sinI.multiply(sinI);
532         final UnivariateDerivative2 cosLk  = scLk.cos();
533         final UnivariateDerivative2 sinLk  = scLk.sin();
534         final UnivariateDerivative2 cos2Lk = sc2Lk.cos();
535         final UnivariateDerivative2 sin2Lk = sc2Lk.sin();
536         final UnivariateDerivative2 cos3Lk = sc3Lk.cos();
537         final UnivariateDerivative2 sin3Lk = sc3Lk.sin();
538         final UnivariateDerivative2 cos4Lk = sc4Lk.cos();
539         final UnivariateDerivative2 sin4Lk = sc4Lk.sin();
540 
541         // h*cos(nLk), l*cos(nLk), h*sin(nLk) and l*sin(nLk)
542         // n = 1
543         final UnivariateDerivative2 hCosLk = h.multiply(cosLk);
544         final UnivariateDerivative2 hSinLk = h.multiply(sinLk);
545         final UnivariateDerivative2 lCosLk = l.multiply(cosLk);
546         final UnivariateDerivative2 lSinLk = l.multiply(sinLk);
547         // n = 2
548         final UnivariateDerivative2 hCos2Lk = h.multiply(cos2Lk);
549         final UnivariateDerivative2 hSin2Lk = h.multiply(sin2Lk);
550         final UnivariateDerivative2 lCos2Lk = l.multiply(cos2Lk);
551         final UnivariateDerivative2 lSin2Lk = l.multiply(sin2Lk);
552         // n = 3
553         final UnivariateDerivative2 hCos3Lk = h.multiply(cos3Lk);
554         final UnivariateDerivative2 hSin3Lk = h.multiply(sin3Lk);
555         final UnivariateDerivative2 lCos3Lk = l.multiply(cos3Lk);
556         final UnivariateDerivative2 lSin3Lk = l.multiply(sin3Lk);
557         // n = 4
558         final UnivariateDerivative2 hCos4Lk = h.multiply(cos4Lk);
559         final UnivariateDerivative2 hSin4Lk = h.multiply(sin4Lk);
560         final UnivariateDerivative2 lCos4Lk = l.multiply(cos4Lk);
561         final UnivariateDerivative2 lSin4Lk = l.multiply(sin4Lk);
562 
563         // 1 - (3 / 2)*sin²i
564         final UnivariateDerivative2 om3o2xSinI2 = sinI2.multiply(1.5).negate().add(1.0);
565 
566         // Compute Differentials
567         // δa
568         final UnivariateDerivative2 dakT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lCosLk.add(hSinLk));
569         final UnivariateDerivative2 dakT2 = b.multiply(sinI2).multiply(hSinLk.multiply(0.5).subtract(lCosLk.multiply(0.5)).
570                                                                      add(cos2Lk).add(lCos3Lk.multiply(3.5)).add(hSin3Lk.multiply(3.5)));
571         final UnivariateDerivative2 dak = dakT1.add(dakT2);
572 
573         // δh
574         final UnivariateDerivative2 dhkT1 = b.multiply(om3o2xSinI2).multiply(sinLk.add(lSin2Lk.multiply(1.5)).subtract(hCos2Lk.multiply(1.5)));
575         final UnivariateDerivative2 dhkT2 = b.multiply(sinI2).multiply(0.25).multiply(sinLk.subtract(sin3Lk.multiply(SEVEN_THIRD)).add(lSin2Lk.multiply(5.0)).
576                                                                                     subtract(lSin4Lk.multiply(8.5)).add(hCos4Lk.multiply(8.5)).add(hCos2Lk));
577         final UnivariateDerivative2 dhkT3 = lSin2Lk.multiply(cosI2).multiply(b).multiply(0.5).negate();
578         final UnivariateDerivative2 dhk = dhkT1.subtract(dhkT2).add(dhkT3);
579 
580         // δl
581         final UnivariateDerivative2 dlkT1 = b.multiply(om3o2xSinI2).multiply(cosLk.add(lCos2Lk.multiply(1.5)).add(hSin2Lk.multiply(1.5)));
582         final UnivariateDerivative2 dlkT2 = b.multiply(sinI2).multiply(0.25).multiply(cosLk.negate().subtract(cos3Lk.multiply(SEVEN_THIRD)).subtract(hSin2Lk.multiply(5.0)).
583                                                                                     subtract(lCos4Lk.multiply(8.5)).subtract(hSin4Lk.multiply(8.5)).add(lCos2Lk));
584         final UnivariateDerivative2 dlkT3 = hSin2Lk.multiply(cosI2).multiply(b).multiply(0.5);
585         final UnivariateDerivative2 dlk = dlkT1.subtract(dlkT2).add(dlkT3);
586 
587         // δλ
588         final UnivariateDerivative2 dokT1 = b.negate().multiply(cosI);
589         final UnivariateDerivative2 dokT2 = lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
590                                           subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH));
591         final UnivariateDerivative2 dok = dokT1.multiply(dokT2);
592 
593         // δi
594         final UnivariateDerivative2 dik = b.multiply(sinI).multiply(cosI).multiply(0.5).
595                         multiply(lCosLk.negate().add(hSinLk).add(cos2Lk).add(lCos3Lk.multiply(SEVEN_THIRD)).add(hSin3Lk.multiply(SEVEN_THIRD)));
596 
597         // δL
598         final UnivariateDerivative2 dLkT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lSinLk.multiply(1.75).subtract(hCosLk.multiply(1.75)));
599         final UnivariateDerivative2 dLkT2 = b.multiply(sinI2).multiply(3.0).multiply(hCosLk.multiply(SEVEN_24TH).negate().subtract(lSinLk.multiply(SEVEN_24TH)).
600                                                                                    subtract(hCos3Lk.multiply(FN_72TH)).add(lSin3Lk.multiply(FN_72TH)).add(sin2Lk.multiply(0.25)));
601         final UnivariateDerivative2 dLkT3 = b.multiply(cosI2).multiply(lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
602                                                                      subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH)));
603         final UnivariateDerivative2 dLk = dLkT1.add(dLkT2).add(dLkT3);
604 
605         // Final array
606         final UnivariateDerivative2[] differentials = MathArrays.buildArray(a.getField(), 6);
607         differentials[0] = dak.multiply(a);
608         differentials[1] = dhk;
609         differentials[2] = dlk;
610         differentials[3] = dok;
611         differentials[4] = dik;
612         differentials[5] = dLk;
613 
614         return differentials;
615     }
616 
617     /** {@inheritDoc} */
618     protected double getMass(final AbsoluteDate date) {
619         return mass;
620     }
621 
622     /**
623      * Get the Earth gravity coefficient used for GLONASS propagation.
624      * @return the Earth gravity coefficient.
625      */
626     public static double getMU() {
627         return GNSSConstants.GLONASS_MU;
628     }
629 
630     /**
631      * Gets the underlying GLONASS orbital elements.
632      *
633      * @return the underlying GLONASS orbital elements
634      */
635     public GLONASSOrbitalElements getGLONASSOrbitalElements() {
636         return glonassOrbit;
637     }
638 
639     /**
640      * Gets the Earth Centered Inertial frame used to propagate the orbit.
641      * @return the ECI frame
642      */
643     public Frame getECI() {
644         return eci;
645     }
646 
647     /**
648      * Gets the Earth Centered Earth Fixed frame used to propagate GLONASS orbits.
649      * @return the ECEF frame
650      */
651     public Frame getECEF() {
652         return ecef;
653     }
654 
655     /** {@inheritDoc} */
656     public Frame getFrame() {
657         return eci;
658     }
659 
660     /** {@inheritDoc} */
661     public void resetInitialState(final SpacecraftState state) {
662         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
663     }
664 
665     /** {@inheritDoc} */
666     protected void resetIntermediateState(final SpacecraftState state, final boolean forward) {
667         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
668     }
669 
670     /** {@inheritDoc} */
671     protected Orbit propagateOrbit(final AbsoluteDate date) {
672         // Gets the PVCoordinates in ECEF frame
673         final PVCoordinates pvaInECEF = propagateInEcef(date);
674         // Transforms the PVCoordinates to ECI frame
675         final PVCoordinates pvaInECI = ecef.getTransformTo(eci, date).transformPVCoordinates(pvaInECEF);
676         // Returns the Cartesian orbit
677         return new CartesianOrbit(pvaInECI, eci, date, GNSSConstants.GLONASS_MU);
678     }
679 
680 }