1 /* Copyright 2002-2021 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.models.earth.troposphere;
18
19 import java.util.Collections;
20 import java.util.List;
21
22 import org.hipparchus.CalculusFieldElement;
23 import org.hipparchus.util.FastMath;
24 import org.orekit.bodies.FieldGeodeticPoint;
25 import org.orekit.bodies.GeodeticPoint;
26 import org.orekit.time.AbsoluteDate;
27 import org.orekit.time.FieldAbsoluteDate;
28 import org.orekit.utils.ParameterDriver;
29
30 /** An estimated tropospheric model. The tropospheric delay is computed according to the formula:
31 * <p>
32 * δ = δ<sub>h</sub> * m<sub>h</sub> + (δ<sub>t</sub> - δ<sub>h</sub>) * m<sub>w</sub>
33 * <p>
34 * With:
35 * <ul>
36 * <li>δ<sub>h</sub>: Tropospheric zenith hydro-static delay.</li>
37 * <li>δ<sub>t</sub>: Tropospheric total zenith delay.</li>
38 * <li>m<sub>h</sub>: Hydro-static mapping function.</li>
39 * <li>m<sub>w</sub>: Wet mapping function.</li>
40 * </ul>
41 * <p>
42 * The mapping functions m<sub>h</sub>(e) and m<sub>w</sub>(e) are
43 * computed thanks to a {@link #model} initialized by the user.
44 * The user has the possibility to use several mapping function models for the computations:
45 * the {@link GlobalMappingFunctionModel Global Mapping Function}, or
46 * the {@link NiellMappingFunctionModel Niell Mapping Function}
47 * </p> <p>
48 * The tropospheric zenith delay δ<sub>h</sub> is computed empirically with a {@link SaastamoinenModel}
49 * while the tropospheric total zenith delay δ<sub>t</sub> is estimated as a {@link ParameterDriver}
50 */
51 public class EstimatedTroposphericModel implements DiscreteTroposphericModel {
52
53 /** Name of the parameter of this model: the total zenith delay. */
54 public static final String TOTAL_ZENITH_DELAY = "total zenith delay";
55
56 /** Mapping Function model. */
57 private final MappingFunction model;
58
59 /** Driver for the tropospheric zenith total delay.*/
60 private final ParameterDriver totalZenithDelay;
61
62 /** The temperature at the station [K]. */
63 private double t0;
64
65 /** The atmospheric pressure [mbar]. */
66 private double p0;
67
68 /** Build a new instance using the given environmental conditions.
69 * @param t0 the temperature at the station [K]
70 * @param p0 the atmospheric pressure at the station [mbar]
71 * @param model mapping function model (NMF or GMF).
72 * @param totalDelay initial value for the tropospheric zenith total delay [m]
73 */
74 public EstimatedTroposphericModel(final double t0, final double p0,
75 final MappingFunction model, final double totalDelay) {
76
77 totalZenithDelay = new ParameterDriver(EstimatedTroposphericModel.TOTAL_ZENITH_DELAY,
78 totalDelay, FastMath.scalb(1.0, 0), 0.0, Double.POSITIVE_INFINITY);
79
80 this.t0 = t0;
81 this.p0 = p0;
82 this.model = model;
83 }
84
85 /** Build a new instance using a standard atmosphere model.
86 * <ul>
87 * <li>temperature: 18 degree Celsius
88 * <li>pressure: 1013.25 mbar
89 * </ul>
90 * @param model mapping function model (NMF or GMF).
91 * @param totalDelay initial value for the tropospheric zenith total delay [m]
92 */
93 public EstimatedTroposphericModel(final MappingFunction model, final double totalDelay) {
94 this(273.15 + 18.0, 1013.25, model, totalDelay);
95 }
96
97 /** {@inheritDoc} */
98 @Override
99 public List<ParameterDriver> getParametersDrivers() {
100 return Collections.singletonList(totalZenithDelay);
101 }
102
103 /** {@inheritDoc} */
104 @Override
105 public double pathDelay(final double elevation, final GeodeticPoint point,
106 final double[] parameters, final AbsoluteDate date) {
107 // Use an empirical model for tropospheric zenith hydro-static delay : Saastamoinen model
108 final SaastamoinenModel saastamoinen = new SaastamoinenModel(t0, p0, 0.0);
109 // Zenith delays. elevation = pi/2 because we compute the delay in the zenith direction
110 final double zhd = saastamoinen.pathDelay(0.5 * FastMath.PI, point, parameters, date);
111 final double ztd = parameters[0];
112 // Mapping functions
113 final double[] mf = model.mappingFactors(elevation, point, date);
114 // Total delay
115 return mf[0] * zhd + mf[1] * (ztd - zhd);
116 }
117
118 /** {@inheritDoc} */
119 @Override
120 public <T extends CalculusFieldElement<T>> T pathDelay(final T elevation, final FieldGeodeticPoint<T> point,
121 final T[] parameters, final FieldAbsoluteDate<T> date) {
122 // Use an empirical model for tropospheric zenith hydro-static delay : Saastamoinen model
123 final SaastamoinenModel saastamoinen = new SaastamoinenModel(t0, p0, 0.0);
124 // Zenith delays. elevation = pi/2 because we compute the delay in the zenith direction
125 final T zhd = saastamoinen.pathDelay(elevation.getPi().multiply(0.5), point, parameters, date);
126 final T ztd = parameters[0];
127 // Mapping functions
128 final T[] mf = model.mappingFactors(elevation, point, date);
129 // Total delay
130 return mf[0].multiply(zhd).add(mf[1].multiply(ztd.subtract(zhd)));
131 }
132
133 }