1 /* Copyright 2002-2021 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.forces.maneuvers;
18
19 import java.util.Arrays;
20
21 import org.hipparchus.geometry.euclidean.threed.Vector3D;
22 import org.hipparchus.util.FastMath;
23 import org.orekit.frames.Frame;
24 import org.orekit.orbits.Orbit;
25 import org.orekit.orbits.OrbitType;
26 import org.orekit.orbits.PositionAngle;
27 import org.orekit.propagation.SpacecraftState;
28 import org.orekit.propagation.analytical.AdapterPropagator;
29 import org.orekit.time.AbsoluteDate;
30 import org.orekit.utils.Constants;
31
32 /** Analytical model for small maneuvers.
33 * <p>The aim of this model is to compute quickly the effect at date t₁
34 * of a small maneuver performed at an earlier date t₀. Both the
35 * direct effect of the maneuver and the Jacobian of this effect with respect to
36 * maneuver parameters are available.
37 * </p>
38 * <p>These effect are computed analytically using two Jacobian matrices:
39 * <ol>
40 * <li>J₀: Jacobian of Keplerian or equinoctial elements with respect
41 * to Cartesian parameters at date t₀ allows to compute
42 * maneuver effect as a change in orbital elements at maneuver date t₀,</li>
43 * <li>J<sub>1/0</sub>: Jacobian of Keplerian or equinoctial elements
44 * at date t₁ with respect to Keplerian or equinoctial elements
45 * at date t₀ allows to propagate the change in orbital elements
46 * to final date t₁.</li>
47 * </ol>
48 *
49 * <p>
50 * The second Jacobian, J<sub>1/0</sub>, is computed using a simple Keplerian
51 * model, i.e. it is the identity except for the mean motion row which also includes
52 * an off-diagonal element due to semi-major axis change.
53 * </p>
54 * <p>
55 * The orbital elements change at date t₁ can be added to orbital elements
56 * extracted from state, and the final elements taking account the changes are then
57 * converted back to appropriate type, which may be different from Keplerian or
58 * equinoctial elements.
59 * </p>
60 * <p>
61 * Note that this model takes <em>only</em> Keplerian effects into account. This means
62 * that using only this class to compute an inclination maneuver in Low Earth Orbit will
63 * <em>not</em> change ascending node drift rate despite inclination has changed (the
64 * same would be true for a semi-major axis change of course). In order to take this
65 * drift into account, an instance of {@link
66 * org.orekit.propagation.analytical.J2DifferentialEffect J2DifferentialEffect}
67 * must be used together with an instance of this class.
68 * </p>
69 * @author Luc Maisonobe
70 */
71 public class SmallManeuverAnalyticalModel
72 implements AdapterPropagator.DifferentialEffect {
73
74 /** State at maneuver date (before maneuver occurrence). */
75 private final SpacecraftState state0;
76
77 /** Inertial velocity increment. */
78 private final Vector3D inertialDV;
79
80 /** Mass change ratio. */
81 private final double massRatio;
82
83 /** Type of orbit used for internal Jacobians. */
84 private final OrbitType type;
85
86 /** Initial Keplerian (or equinoctial) Jacobian with respect to maneuver. */
87 private final double[][] j0;
88
89 /** Time derivative of the initial Keplerian (or equinoctial) Jacobian with respect to maneuver. */
90 private double[][] j0Dot;
91
92 /** Mean anomaly change factor. */
93 private final double ksi;
94
95 /** Build a maneuver defined in spacecraft frame.
96 * @param state0 state at maneuver date, <em>before</em> the maneuver
97 * is performed
98 * @param dV velocity increment in spacecraft frame
99 * @param isp engine specific impulse (s)
100 */
101 public SmallManeuverAnalyticalModel(final SpacecraftState state0,
102 final Vector3D dV, final double isp) {
103 this(state0, state0.getFrame(),
104 state0.getAttitude().getRotation().applyInverseTo(dV),
105 isp);
106 }
107
108 /** Build a maneuver defined in user-specified frame.
109 * @param state0 state at maneuver date, <em>before</em> the maneuver
110 * is performed
111 * @param frame frame in which velocity increment is defined
112 * @param dV velocity increment in specified frame
113 * @param isp engine specific impulse (s)
114 */
115 public SmallManeuverAnalyticalModel(final SpacecraftState state0, final Frame frame,
116 final Vector3D dV, final double isp) {
117
118 this.state0 = state0;
119 this.massRatio = FastMath.exp(-dV.getNorm() / (Constants.G0_STANDARD_GRAVITY * isp));
120
121 // use equinoctial orbit type if possible, Keplerian if nearly hyperbolic orbits
122 type = (state0.getE() < 0.9) ? OrbitType.EQUINOCTIAL : OrbitType.KEPLERIAN;
123
124 // compute initial Jacobian
125 final double[][] fullJacobian = new double[6][6];
126 j0 = new double[6][3];
127 final Orbit orbit0 = type.convertType(state0.getOrbit());
128 orbit0.getJacobianWrtCartesian(PositionAngle.MEAN, fullJacobian);
129 for (int i = 0; i < j0.length; ++i) {
130 System.arraycopy(fullJacobian[i], 3, j0[i], 0, 3);
131 }
132
133 // use lazy evaluation for j0Dot, as it is used only when Jacobians are evaluated
134 j0Dot = null;
135
136 // compute maneuver effect on Keplerian (or equinoctial) elements
137 inertialDV = frame.getTransformTo(state0.getFrame(), state0.getDate()).transformVector(dV);
138
139 // compute mean anomaly change: dM(t1) = dM(t0) + ksi * da * (t1 - t0)
140 final double mu = state0.getMu();
141 final double a = state0.getA();
142 ksi = -1.5 * FastMath.sqrt(mu / a) / (a * a);
143
144 }
145
146 /** Get the date of the maneuver.
147 * @return date of the maneuver
148 */
149 public AbsoluteDate getDate() {
150 return state0.getDate();
151 }
152
153 /** Get the inertial velocity increment of the maneuver.
154 * @return velocity increment in a state-dependent inertial frame
155 * @see #getInertialFrame()
156 */
157 public Vector3D getInertialDV() {
158 return inertialDV;
159 }
160
161 /** Get the inertial frame in which the velocity increment is defined.
162 * @return inertial frame in which the velocity increment is defined
163 * @see #getInertialDV()
164 */
165 public Frame getInertialFrame() {
166 return state0.getFrame();
167 }
168
169 /** Compute the effect of the maneuver on an orbit.
170 * @param orbit1 original orbit at t₁, without maneuver
171 * @return orbit at t₁, taking the maneuver
172 * into account if t₁ > t₀
173 * @see #apply(SpacecraftState)
174 * @see #getJacobian(Orbit, PositionAngle, double[][])
175 */
176 public Orbit apply(final Orbit orbit1) {
177
178 if (orbit1.getDate().compareTo(state0.getDate()) <= 0) {
179 // the maneuver has not occurred yet, don't change anything
180 return orbit1;
181 }
182
183 return orbit1.getType().convertType(updateOrbit(orbit1));
184
185 }
186
187 /** Compute the effect of the maneuver on a spacecraft state.
188 * @param state1 original spacecraft state at t₁,
189 * without maneuver
190 * @return spacecraft state at t₁, taking the maneuver
191 * into account if t₁ > t₀
192 * @see #apply(Orbit)
193 * @see #getJacobian(Orbit, PositionAngle, double[][])
194 */
195 public SpacecraftState apply(final SpacecraftState state1) {
196
197 if (state1.getDate().compareTo(state0.getDate()) <= 0) {
198 // the maneuver has not occurred yet, don't change anything
199 return state1;
200 }
201
202 return new SpacecraftState(state1.getOrbit().getType().convertType(updateOrbit(state1.getOrbit())),
203 state1.getAttitude(), updateMass(state1.getMass()));
204
205 }
206
207 /** Compute the effect of the maneuver on an orbit.
208 * @param orbit1 original orbit at t₁, without maneuver
209 * @return orbit at t₁, always taking the maneuver into account, always in the internal type
210 */
211 private Orbit updateOrbit(final Orbit orbit1) {
212
213 // compute maneuver effect
214 final double dt = orbit1.getDate().durationFrom(state0.getDate());
215 final double x = inertialDV.getX();
216 final double y = inertialDV.getY();
217 final double z = inertialDV.getZ();
218 final double[] delta = new double[6];
219 for (int i = 0; i < delta.length; ++i) {
220 delta[i] = j0[i][0] * x + j0[i][1] * y + j0[i][2] * z;
221 }
222 delta[5] += ksi * delta[0] * dt;
223
224 // convert current orbital state to Keplerian or equinoctial elements
225 final double[] parameters = new double[6];
226 type.mapOrbitToArray(type.convertType(orbit1), PositionAngle.MEAN, parameters, null);
227 for (int i = 0; i < delta.length; ++i) {
228 parameters[i] += delta[i];
229 }
230
231 // build updated orbit as Keplerian or equinoctial elements
232 return type.mapArrayToOrbit(parameters, null, PositionAngle.MEAN,
233 orbit1.getDate(), orbit1.getMu(), orbit1.getFrame());
234
235 }
236
237 /** Compute the Jacobian of the orbit with respect to maneuver parameters.
238 * <p>
239 * The Jacobian matrix is a 6x4 matrix. Element jacobian[i][j] corresponds to
240 * the partial derivative of orbital parameter i with respect to maneuver
241 * parameter j. The rows order is the same order as used in {@link
242 * Orbit#getJacobianWrtCartesian(PositionAngle, double[][]) Orbit.getJacobianWrtCartesian}
243 * method. Columns (0, 1, 2) correspond to the velocity increment coordinates
244 * (ΔV<sub>x</sub>, ΔV<sub>y</sub>, ΔV<sub>z</sub>) in the
245 * inertial frame returned by {@link #getInertialFrame()}, and column 3
246 * corresponds to the maneuver date t₀.
247 * </p>
248 * @param orbit1 original orbit at t₁, without maneuver
249 * @param positionAngle type of the position angle to use
250 * @param jacobian placeholder 6x4 (or larger) matrix to be filled with the Jacobian, if matrix
251 * is larger than 6x4, only the 6x4 upper left corner will be modified
252 * @see #apply(Orbit)
253 */
254 public void getJacobian(final Orbit orbit1, final PositionAngle positionAngle,
255 final double[][] jacobian) {
256
257 final double dt = orbit1.getDate().durationFrom(state0.getDate());
258 if (dt < 0) {
259 // the maneuver has not occurred yet, Jacobian is null
260 for (int i = 0; i < 6; ++i) {
261 Arrays.fill(jacobian[i], 0, 4, 0.0);
262 }
263 return;
264 }
265
266 // derivatives of Keplerian/equinoctial elements with respect to velocity increment
267 final double x = inertialDV.getX();
268 final double y = inertialDV.getY();
269 final double z = inertialDV.getZ();
270 for (int i = 0; i < 6; ++i) {
271 System.arraycopy(j0[i], 0, jacobian[i], 0, 3);
272 }
273 for (int j = 0; j < 3; ++j) {
274 jacobian[5][j] += ksi * dt * j0[0][j];
275 }
276
277 // derivatives of Keplerian/equinoctial elements with respect to date
278 evaluateJ0Dot();
279 for (int i = 0; i < 6; ++i) {
280 jacobian[i][3] = j0Dot[i][0] * x + j0Dot[i][1] * y + j0Dot[i][2] * z;
281 }
282 final double da = j0[0][0] * x + j0[0][1] * y + j0[0][2] * z;
283 jacobian[5][3] += ksi * (jacobian[0][3] * dt - da);
284
285 if (orbit1.getType() != type || positionAngle != PositionAngle.MEAN) {
286
287 // convert to derivatives of Cartesian parameters
288 final double[][] j2 = new double[6][6];
289 final double[][] pvJacobian = new double[6][4];
290 final Orbit updated = updateOrbit(orbit1);
291 updated.getJacobianWrtParameters(PositionAngle.MEAN, j2);
292 for (int i = 0; i < 6; ++i) {
293 for (int j = 0; j < 4; ++j) {
294 pvJacobian[i][j] = j2[i][0] * jacobian[0][j] + j2[i][1] * jacobian[1][j] +
295 j2[i][2] * jacobian[2][j] + j2[i][3] * jacobian[3][j] +
296 j2[i][4] * jacobian[4][j] + j2[i][5] * jacobian[5][j];
297 }
298 }
299
300 // convert to derivatives of specified parameters
301 final double[][] j3 = new double[6][6];
302 orbit1.getType().convertType(updated).getJacobianWrtCartesian(positionAngle, j3);
303 for (int j = 0; j < 4; ++j) {
304 for (int i = 0; i < 6; ++i) {
305 jacobian[i][j] = j3[i][0] * pvJacobian[0][j] + j3[i][1] * pvJacobian[1][j] +
306 j3[i][2] * pvJacobian[2][j] + j3[i][3] * pvJacobian[3][j] +
307 j3[i][4] * pvJacobian[4][j] + j3[i][5] * pvJacobian[5][j];
308 }
309 }
310
311 }
312
313 }
314
315 /** Lazy evaluation of the initial Jacobian time derivative.
316 */
317 private void evaluateJ0Dot() {
318
319 if (j0Dot == null) {
320
321 j0Dot = new double[6][3];
322 final double dt = 1.0e-5 / state0.getOrbit().getKeplerianMeanMotion();
323 final Orbit orbit = type.convertType(state0.getOrbit());
324
325 // compute shifted Jacobians
326 final double[][] j0m1 = new double[6][6];
327 orbit.shiftedBy(-1 * dt).getJacobianWrtCartesian(PositionAngle.MEAN, j0m1);
328 final double[][] j0p1 = new double[6][6];
329 orbit.shiftedBy(+1 * dt).getJacobianWrtCartesian(PositionAngle.MEAN, j0p1);
330
331 // evaluate derivative by finite differences
332 for (int i = 0; i < j0Dot.length; ++i) {
333 final double[] m1Row = j0m1[i];
334 final double[] p1Row = j0p1[i];
335 final double[] j0DotRow = j0Dot[i];
336 for (int j = 0; j < 3; ++j) {
337 j0DotRow[j] = (p1Row[j + 3] - m1Row[j + 3]) / (2 * dt);
338 }
339 }
340
341 }
342
343 }
344
345 /** Update a spacecraft mass due to maneuver.
346 * @param mass masse before maneuver
347 * @return mass after maneuver
348 */
349 public double updateMass(final double mass) {
350 return massRatio * mass;
351 }
352
353 }