1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.measurements.modifiers;
18  
19  import java.util.Arrays;
20  import java.util.List;
21  
22  import org.hipparchus.CalculusFieldElement;
23  import org.hipparchus.analysis.differentiation.Gradient;
24  import org.orekit.attitudes.InertialProvider;
25  import org.orekit.estimation.measurements.EstimatedMeasurement;
26  import org.orekit.estimation.measurements.EstimationModifier;
27  import org.orekit.estimation.measurements.GroundStation;
28  import org.orekit.estimation.measurements.RangeRate;
29  import org.orekit.frames.TopocentricFrame;
30  import org.orekit.models.earth.ionosphere.IonosphericModel;
31  import org.orekit.propagation.FieldSpacecraftState;
32  import org.orekit.propagation.SpacecraftState;
33  import org.orekit.utils.Differentiation;
34  import org.orekit.utils.ParameterDriver;
35  import org.orekit.utils.ParameterFunction;
36  
37  /** Class modifying theoretical range-rate measurement with ionospheric delay.
38   * The effect of ionospheric correction on the range-rate is directly computed
39   * through the computation of the ionospheric delay difference with respect to
40   * time.
41   *
42   * The ionospheric delay depends on the frequency of the signal (GNSS, VLBI, ...).
43   * For optical measurements (e.g. SLR), the ray is not affected by ionosphere charged particles.
44   * <p>
45   * Since 10.0, state derivatives and ionospheric parameters derivates are computed
46   * using automatic differentiation.
47   * </p>
48   * @author Joris Olympio
49   * @since 8.0
50   */
51  public class RangeRateIonosphericDelayModifier implements EstimationModifier<RangeRate> {
52  
53      /** Ionospheric delay model. */
54      private final IonosphericModel ionoModel;
55  
56      /** Frequency [Hz]. */
57      private final double frequency;
58  
59      /** Coefficient for measurment configuration (one-way, two-way). */
60      private final double fTwoWay;
61  
62      /** Constructor.
63       *
64       * @param model Ionospheric delay model appropriate for the current range-rate measurement method.
65       * @param freq frequency of the signal in Hz
66       * @param twoWay Flag indicating whether the measurement is two-way.
67       */
68      public RangeRateIonosphericDelayModifier(final IonosphericModel model,
69                                               final double freq, final boolean twoWay) {
70          ionoModel = model;
71          frequency = freq;
72  
73          if (twoWay) {
74              fTwoWay = 2.;
75          } else {
76              fTwoWay = 1.;
77          }
78      }
79  
80      /** Compute the measurement error due to Ionosphere.
81       * @param station station
82       * @param state spacecraft state
83       * @return the measurement error due to Ionosphere
84       */
85      private double rangeRateErrorIonosphericModel(final GroundStation station, final SpacecraftState state) {
86          final double dt = 10; // s
87          // Base frame associated with the station
88          final TopocentricFrame baseFrame = station.getBaseFrame();
89          // delay in meters
90          final double delay1 = ionoModel.pathDelay(state, baseFrame, frequency, ionoModel.getParameters());
91          // propagate spacecraft state forward by dt
92          final SpacecraftState state2 = state.shiftedBy(dt);
93          // ionospheric delay dt after in meters
94          final double delay2 = ionoModel.pathDelay(state2, baseFrame, frequency, ionoModel.getParameters());
95          // delay in meters
96          return fTwoWay * (delay2 - delay1) / dt;
97      }
98  
99      /** Compute the measurement error due to Ionosphere.
100      * @param <T> type of the elements
101      * @param station station
102      * @param state spacecraft state
103      * @param parameters ionospheric model parameters
104      * @return the measurement error due to Ionosphere
105      */
106     private <T extends CalculusFieldElement<T>> T rangeRateErrorIonosphericModel(final GroundStation station,
107                                                                              final FieldSpacecraftState<T> state,
108                                                                              final T[] parameters) {
109         final double dt = 10; // s
110         // Base frame associated with the station
111         final TopocentricFrame baseFrame = station.getBaseFrame();
112         // delay in meters
113         final T delay1 = ionoModel.pathDelay(state, baseFrame, frequency, parameters);
114         // propagate spacecraft state forward by dt
115         final FieldSpacecraftState<T> state2 = state.shiftedBy(dt);
116         // ionospheric delay dt after in meters
117         final T delay2 = ionoModel.pathDelay(state2, baseFrame, frequency, parameters);
118         // delay in meters
119         return delay2.subtract(delay1).divide(dt).multiply(fTwoWay);
120     }
121 
122     /** Compute the Jacobian of the delay term wrt state using
123     * automatic differentiation.
124     *
125     * @param derivatives ionospheric delay derivatives
126     *
127     * @return Jacobian of the delay wrt state
128     */
129     private double[][] rangeRateErrorJacobianState(final double[] derivatives) {
130         final double[][] finiteDifferencesJacobian = new double[1][6];
131         System.arraycopy(derivatives, 0, finiteDifferencesJacobian[0], 0, 6);
132         return finiteDifferencesJacobian;
133     }
134 
135     /** Compute the derivative of the delay term wrt parameters.
136     *
137     * @param station ground station
138     * @param driver driver for the station offset parameter
139     * @param state spacecraft state
140     * @return derivative of the delay wrt station offset parameter
141     */
142     private double rangeRateErrorParameterDerivative(final GroundStation station,
143                                                      final ParameterDriver driver,
144                                                      final SpacecraftState state) {
145 
146         final ParameterFunction rangeError = new ParameterFunction() {
147             /** {@inheritDoc} */
148             @Override
149             public double value(final ParameterDriver parameterDriver) {
150                 return rangeRateErrorIonosphericModel(station, state);
151             }
152         };
153 
154         final ParameterFunction rangeErrorDerivative =
155                         Differentiation.differentiate(rangeError, 3, 10.0 * driver.getScale());
156 
157         return rangeErrorDerivative.value(driver);
158 
159     }
160 
161     /** Compute the derivative of the delay term wrt parameters using
162     * automatic differentiation.
163     *
164     * @param derivatives ionospheric delay derivatives
165     * @param freeStateParameters dimension of the state.
166     * @return derivative of the delay wrt ionospheric model parameters
167     */
168     private double[] rangeRateErrorParameterDerivative(final double[] derivatives, final int freeStateParameters) {
169         // 0 ... freeStateParameters - 1 -> derivatives of the delay wrt state
170         // freeStateParameters ... n     -> derivatives of the delay wrt ionospheric parameters
171         final int dim = derivatives.length - freeStateParameters;
172         final double[] rangeError = new double[dim];
173 
174         for (int i = 0; i < dim; i++) {
175             rangeError[i] = derivatives[freeStateParameters + i];
176         }
177 
178         return rangeError;
179     }
180 
181     /** {@inheritDoc} */
182     @Override
183     public List<ParameterDriver> getParametersDrivers() {
184         return ionoModel.getParametersDrivers();
185     }
186 
187     /** {@inheritDoc} */
188     @Override
189     public void modify(final EstimatedMeasurement<RangeRate> estimated) {
190 
191         final RangeRate       measurement = estimated.getObservedMeasurement();
192         final GroundStation   station     = measurement.getStation();
193         final SpacecraftState state       = estimated.getStates()[0];
194 
195         final double[] oldValue = estimated.getEstimatedValue();
196 
197         // update estimated derivatives with Jacobian of the measure wrt state
198         final IonosphericGradientConverter converter =
199                 new IonosphericGradientConverter(state, 6, new InertialProvider(state.getFrame()));
200         final FieldSpacecraftState<Gradient> gState = converter.getState(ionoModel);
201         final Gradient[] gParameters = converter.getParameters(gState, ionoModel);
202         final Gradient gDelay = rangeRateErrorIonosphericModel(station, gState, gParameters);
203         final double[] derivatives = gDelay.getGradient();
204 
205         // update estimated derivatives with Jacobian of the measure wrt state
206         final double[][] djac = rangeRateErrorJacobianState(derivatives);
207         final double[][] stateDerivatives = estimated.getStateDerivatives(0);
208         for (int irow = 0; irow < stateDerivatives.length; ++irow) {
209             for (int jcol = 0; jcol < stateDerivatives[0].length; ++jcol) {
210                 stateDerivatives[irow][jcol] += djac[irow][jcol];
211             }
212         }
213         estimated.setStateDerivatives(0, stateDerivatives);
214 
215         int index = 0;
216         for (final ParameterDriver driver : getParametersDrivers()) {
217             if (driver.isSelected()) {
218                 // update estimated derivatives with derivative of the modification wrt ionospheric parameters
219                 double parameterDerivative = estimated.getParameterDerivatives(driver)[0];
220                 final double[] dDelaydP    = rangeRateErrorParameterDerivative(derivatives, converter.getFreeStateParameters());
221                 parameterDerivative += dDelaydP[index];
222                 estimated.setParameterDerivatives(driver, parameterDerivative);
223                 index = index + 1;
224             }
225 
226         }
227 
228         for (final ParameterDriver driver : Arrays.asList(station.getClockOffsetDriver(),
229                                                           station.getEastOffsetDriver(),
230                                                           station.getNorthOffsetDriver(),
231                                                           station.getZenithOffsetDriver())) {
232             if (driver.isSelected()) {
233                 // update estimated derivatives with derivative of the modification wrt station parameters
234                 double parameterDerivative = estimated.getParameterDerivatives(driver)[0];
235                 parameterDerivative += rangeRateErrorParameterDerivative(station, driver, state);
236                 estimated.setParameterDerivatives(driver, parameterDerivative);
237             }
238         }
239 
240         // update estimated value taking into account the ionospheric delay.
241         // The ionospheric delay is directly added to the range.
242         final double[] newValue = oldValue.clone();
243         newValue[0] = newValue[0] + gDelay.getValue();
244         estimated.setEstimatedValue(newValue);
245 
246     }
247 
248 }