1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.orekit.estimation.measurements.gnss;
18
19 import java.util.Arrays;
20 import java.util.Collections;
21 import java.util.HashMap;
22 import java.util.Map;
23
24 import org.hipparchus.analysis.differentiation.Gradient;
25 import org.orekit.estimation.measurements.AbstractMeasurement;
26 import org.orekit.estimation.measurements.EstimatedMeasurement;
27 import org.orekit.estimation.measurements.InterSatellitesRange;
28 import org.orekit.estimation.measurements.ObservableSatellite;
29 import org.orekit.propagation.SpacecraftState;
30 import org.orekit.time.AbsoluteDate;
31 import org.orekit.time.FieldAbsoluteDate;
32 import org.orekit.utils.Constants;
33 import org.orekit.utils.PVCoordinatesProvider;
34 import org.orekit.utils.ParameterDriver;
35 import org.orekit.utils.TimeStampedFieldPVCoordinates;
36 import org.orekit.utils.TimeStampedPVCoordinates;
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 public class OneWayGNSSRange extends AbstractMeasurement<OneWayGNSSRange> {
58
59
60 private final PVCoordinatesProvider remote;
61
62
63 private final double dtRemote;
64
65
66
67
68
69
70
71
72
73
74 public OneWayGNSSRange(final PVCoordinatesProvider remote,
75 final double dtRemote,
76 final AbsoluteDate date,
77 final double range, final double sigma,
78 final double baseWeight, final ObservableSatellite local) {
79
80 super(date, range, sigma, baseWeight, Collections.singletonList(local));
81
82 addParameterDriver(local.getClockOffsetDriver());
83
84 this.dtRemote = dtRemote;
85 this.remote = remote;
86 }
87
88
89 @Override
90 protected EstimatedMeasurement<OneWayGNSSRange> theoreticalEvaluation(final int iteration,
91 final int evaluation,
92 final SpacecraftState[] states) {
93
94
95
96
97
98
99 int nbEstimatedParams = 6;
100 final Map<String, Integer> parameterIndices = new HashMap<>();
101 for (ParameterDriver measurementDriver : getParametersDrivers()) {
102 if (measurementDriver.isSelected()) {
103 parameterIndices.put(measurementDriver.getName(), nbEstimatedParams++);
104 }
105 }
106
107
108 final SpacecraftState localState = states[0];
109 final TimeStampedFieldPVCoordinates<Gradient> pvaLocal = getCoordinates(localState, 0, nbEstimatedParams);
110 final TimeStampedPVCoordinates pvaRemote = remote.getPVCoordinates(getDate(), localState.getFrame());
111
112
113 final Gradient dtLocal = getSatellites().get(0).getClockOffsetDriver().getValue(nbEstimatedParams, parameterIndices);
114 final FieldAbsoluteDate<Gradient> arrivalDate = new FieldAbsoluteDate<>(getDate(), dtLocal.negate());
115
116 final TimeStampedFieldPVCoordinates<Gradient> s1Downlink = pvaLocal.shiftedBy(arrivalDate.durationFrom(pvaLocal.getDate()));
117 final Gradient tauD = signalTimeOfFlight(new TimeStampedFieldPVCoordinates<>(pvaRemote.getDate(), dtLocal.getField().getOne(), pvaRemote),
118 s1Downlink.getPosition(), arrivalDate);
119
120
121 final double delta = getDate().durationFrom(pvaRemote.getDate());
122 final Gradient deltaMTauD = tauD.negate().add(delta);
123
124
125 final EstimatedMeasurement<OneWayGNSSRange> estimatedRange =
126 new EstimatedMeasurement<>(this, iteration, evaluation,
127 new SpacecraftState[] {
128 localState.shiftedBy(deltaMTauD.getValue())
129 }, new TimeStampedPVCoordinates[] {
130 pvaRemote.shiftedBy(delta - tauD.getValue()),
131 localState.shiftedBy(delta).getPVCoordinates()
132 });
133
134
135 final Gradient range = tauD.add(dtLocal).subtract(dtRemote).multiply(Constants.SPEED_OF_LIGHT);
136 final double[] rangeDerivatives = range.getGradient();
137
138
139 estimatedRange.setEstimatedValue(range.getValue());
140 estimatedRange.setStateDerivatives(0, Arrays.copyOfRange(rangeDerivatives, 0, 6));
141
142
143 for (final ParameterDriver measurementDriver : getParametersDrivers()) {
144 final Integer index = parameterIndices.get(measurementDriver.getName());
145 if (index != null) {
146 estimatedRange.setParameterDerivatives(measurementDriver, rangeDerivatives[index]);
147 }
148 }
149
150
151 return estimatedRange;
152
153 }
154
155 }