1   /* Copyright 2002-2021 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.measurements;
18  
19  import java.util.Arrays;
20  import java.util.Collections;
21  import java.util.HashMap;
22  import java.util.Map;
23  
24  import org.hipparchus.Field;
25  import org.hipparchus.analysis.differentiation.Gradient;
26  import org.hipparchus.analysis.differentiation.GradientField;
27  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
28  import org.orekit.frames.FieldTransform;
29  import org.orekit.propagation.SpacecraftState;
30  import org.orekit.time.AbsoluteDate;
31  import org.orekit.time.FieldAbsoluteDate;
32  import org.orekit.utils.Constants;
33  import org.orekit.utils.FieldPVCoordinates;
34  import org.orekit.utils.PVCoordinates;
35  import org.orekit.utils.ParameterDriver;
36  import org.orekit.utils.TimeStampedFieldPVCoordinates;
37  import org.orekit.utils.TimeStampedPVCoordinates;
38  
39  /** Class modeling a turn-around range measurement using a primary ground station and a secondary ground station.
40   * <p>
41   * The measurement is considered to be a signal:
42   * - Emitted from the primary ground station
43   * - Reflected on the spacecraft
44   * - Reflected on the secondary ground station
45   * - Reflected on the spacecraft again
46   * - Received on the primary ground station
47   * Its value is the elapsed time between emission and reception
48   * divided by 2c were c is the speed of light.
49   * The motion of the stations and the spacecraft
50   * during the signal flight time are taken into account.
51   * The date of the measurement corresponds to the
52   * reception on ground of the reflected signal.
53   * </p>
54   * @author Thierry Ceolin
55   * @author Luc Maisonobe
56   * @author Maxime Journot
57   *
58   * @since 9.0
59   */
60  public class TurnAroundRange extends AbstractMeasurement<TurnAroundRange> {
61  
62      /** Primary ground station from which measurement is performed. */
63      private final GroundStation primaryStation;
64  
65      /** Secondary ground station reflecting the signal. */
66      private final GroundStation secondaryStation;
67  
68      /** Simple constructor.
69       * @param primaryStation ground station from which measurement is performed
70       * @param secondaryStation ground station reflecting the signal
71       * @param date date of the measurement
72       * @param turnAroundRange observed value
73       * @param sigma theoretical standard deviation
74       * @param baseWeight base weight
75       * @param satellite satellite related to this measurement
76       * @since 9.3
77       */
78      public TurnAroundRange(final GroundStation primaryStation, final GroundStation secondaryStation,
79                             final AbsoluteDate date, final double turnAroundRange,
80                             final double sigma, final double baseWeight,
81                             final ObservableSatellite satellite) {
82          super(date, turnAroundRange, sigma, baseWeight, Collections.singletonList(satellite));
83          addParameterDriver(primaryStation.getClockOffsetDriver());
84          addParameterDriver(primaryStation.getEastOffsetDriver());
85          addParameterDriver(primaryStation.getNorthOffsetDriver());
86          addParameterDriver(primaryStation.getZenithOffsetDriver());
87          addParameterDriver(primaryStation.getPrimeMeridianOffsetDriver());
88          addParameterDriver(primaryStation.getPrimeMeridianDriftDriver());
89          addParameterDriver(primaryStation.getPolarOffsetXDriver());
90          addParameterDriver(primaryStation.getPolarDriftXDriver());
91          addParameterDriver(primaryStation.getPolarOffsetYDriver());
92          addParameterDriver(primaryStation.getPolarDriftYDriver());
93          // the secondary station clock is not used at all, we ignore the corresponding parameter driver
94          addParameterDriver(secondaryStation.getEastOffsetDriver());
95          addParameterDriver(secondaryStation.getNorthOffsetDriver());
96          addParameterDriver(secondaryStation.getZenithOffsetDriver());
97          addParameterDriver(secondaryStation.getPrimeMeridianOffsetDriver());
98          addParameterDriver(secondaryStation.getPrimeMeridianDriftDriver());
99          addParameterDriver(secondaryStation.getPolarOffsetXDriver());
100         addParameterDriver(secondaryStation.getPolarDriftXDriver());
101         addParameterDriver(secondaryStation.getPolarOffsetYDriver());
102         addParameterDriver(secondaryStation.getPolarDriftYDriver());
103         this.primaryStation   = primaryStation;
104         this.secondaryStation = secondaryStation;
105     }
106 
107     /** Get the primary ground station from which measurement is performed.
108      * @return primary ground station from which measurement is performed
109      */
110     public GroundStation getPrimaryStation() {
111         return primaryStation;
112     }
113 
114     /** Get the secondary ground station reflecting the signal.
115      * @return secondary ground station reflecting the signal
116      */
117     public GroundStation getSecondaryStation() {
118         return secondaryStation;
119     }
120 
121     /** {@inheritDoc} */
122     @Override
123     protected EstimatedMeasurement<TurnAroundRange> theoreticalEvaluation(final int iteration, final int evaluation,
124                                                                           final SpacecraftState[] states) {
125 
126         final SpacecraftState state = states[0];
127 
128         // Turn around range derivatives are computed with respect to:
129         // - Spacecraft state in inertial frame
130         // - Primary station parameters
131         // - Secondary station parameters
132         // --------------------------
133         //
134         //  - 0..2 - Position of the spacecraft in inertial frame
135         //  - 3..5 - Velocity of the spacecraft in inertial frame
136         //  - 6..n - stations' parameters (clock offset, station offsets, pole, prime meridian...)
137         int nbParams = 6;
138         final Map<String, Integer> indices = new HashMap<>();
139         for (ParameterDriver driver : getParametersDrivers()) {
140             // we have to check for duplicate keys because primary and secondary station share
141             // pole and prime meridian parameters names that must be considered
142             // as one set only (they are combined together by the estimation engine)
143             if (driver.isSelected() && !indices.containsKey(driver.getName())) {
144                 indices.put(driver.getName(), nbParams++);
145             }
146         }
147         final Field<Gradient>         field   = GradientField.getField(nbParams);
148         final FieldVector3D<Gradient> zero    = FieldVector3D.getZero(field);
149 
150         // Place the gradient in a time-stamped PV
151         final TimeStampedFieldPVCoordinates<Gradient> pvaDS = getCoordinates(state, 0, nbParams);
152 
153         // The path of the signal is divided in two legs.
154         // Leg1: Emission from primary station to satellite in primaryTauU seconds
155         //     + Reflection from satellite to secondary station in secondaryTauD seconds
156         // Leg2: Reflection from secondary station to satellite in secondaryTauU seconds
157         //     + Reflection from satellite to primary station in primaryTaudD seconds
158         // The measurement is considered to be time stamped at reception on ground
159         // by the primary station. All times are therefore computed as backward offsets
160         // with respect to this reception time.
161         //
162         // Two intermediate spacecraft states are defined:
163         //  - transitStateLeg2: State of the satellite when it bounced back the signal
164         //                      from secondary station to primary station during the 2nd leg
165         //  - transitStateLeg1: State of the satellite when it bounced back the signal
166         //                      from primary station to secondary station during the 1st leg
167 
168         // Compute propagation time for the 2nd leg of the signal path
169         // --
170 
171         // Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
172         // (if state has already been set up to pre-compensate propagation delay,
173         // we will have delta = primaryTauD + secondaryTauU)
174         final double delta = getDate().durationFrom(state.getDate());
175 
176         // transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
177         final FieldTransform<Gradient> primaryToInert =
178                         primaryStation.getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
179         final FieldAbsoluteDate<Gradient> measurementDateDS = primaryToInert.getFieldDate();
180 
181         // Primary station PV in inertial frame at measurement date
182         final TimeStampedFieldPVCoordinates<Gradient> primaryArrival =
183                         primaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateDS,
184                                                                                                   zero, zero, zero));
185 
186         // Compute propagation times
187         final Gradient primaryTauD = signalTimeOfFlight(pvaDS, primaryArrival.getPosition(), measurementDateDS);
188 
189         // Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
190         final Gradient dtLeg2 = primaryTauD.negate().add(delta);
191 
192         // Transit state where the satellite reflected the signal from secondary to primary station
193         final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2.getValue());
194 
195         // Transit state pv of leg2 (re)computed with gradient
196         final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg2PV = pvaDS.shiftedBy(dtLeg2);
197 
198         // transform between secondary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
199         // The components of secondary station's position in offset frame are the 3 last derivative parameters
200         final FieldAbsoluteDate<Gradient> approxReboundDate = measurementDateDS.shiftedBy(-delta);
201         final FieldTransform<Gradient> secondaryToInertApprox =
202                         secondaryStation.getOffsetToInertial(state.getFrame(), approxReboundDate, nbParams, indices);
203 
204         // Secondary station PV in inertial frame at approximate rebound date on secondary station
205         final TimeStampedFieldPVCoordinates<Gradient> QSecondaryApprox =
206                         secondaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxReboundDate,
207                                                                                                           zero, zero, zero));
208 
209         // Uplink time of flight from secondary station to transit state of leg2
210         final Gradient secondaryTauU = signalTimeOfFlight(QSecondaryApprox,
211                                                           transitStateLeg2PV.getPosition(),
212                                                           transitStateLeg2PV.getDate());
213 
214         // Total time of flight for leg 2
215         final Gradient tauLeg2 = primaryTauD.add(secondaryTauU);
216 
217         // Compute propagation time for the 1st leg of the signal path
218         // --
219 
220         // Absolute date of rebound of the signal to secondary station
221         final FieldAbsoluteDate<Gradient> reboundDateDS = measurementDateDS.shiftedBy(tauLeg2.negate());
222         final FieldTransform<Gradient> secondaryToInert =
223                         secondaryStation.getOffsetToInertial(state.getFrame(), reboundDateDS, nbParams, indices);
224 
225         // Secondary station PV in inertial frame at rebound date on secondary station
226         final TimeStampedFieldPVCoordinates<Gradient> secondaryRebound =
227                         secondaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(reboundDateDS,
228                                                                                                     FieldPVCoordinates.getZero(field)));
229 
230         // Downlink time of flight from transitStateLeg1 to secondary station at rebound date
231         final Gradient secondaryTauD = signalTimeOfFlight(transitStateLeg2PV,
232                                                           secondaryRebound.getPosition(),
233                                                           reboundDateDS);
234 
235 
236         // Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
237         final Gradient dtLeg1 = dtLeg2.subtract(secondaryTauU).subtract(secondaryTauD);
238 
239         // Transit state pv of leg2 (re)computed with gradients
240         final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg1PV = pvaDS.shiftedBy(dtLeg1);
241 
242         // transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
243         // The components of primary station's position in offset frame are the 3 third derivative parameters
244         final FieldAbsoluteDate<Gradient> approxEmissionDate =
245                         measurementDateDS.shiftedBy(-2 * (secondaryTauU.getValue() + primaryTauD.getValue()));
246         final FieldTransform<Gradient> primaryToInertApprox =
247                         primaryStation.getOffsetToInertial(state.getFrame(), approxEmissionDate, nbParams, indices);
248 
249         // Primary station PV in inertial frame at approximate emission date
250         final TimeStampedFieldPVCoordinates<Gradient> QPrimaryApprox =
251                         primaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxEmissionDate,
252                                                                                                         zero, zero, zero));
253 
254         // Uplink time of flight from primary station to transit state of leg1
255         final Gradient primaryTauU = signalTimeOfFlight(QPrimaryApprox,
256                                                         transitStateLeg1PV.getPosition(),
257                                                         transitStateLeg1PV.getDate());
258 
259         // Primary station PV in inertial frame at exact emission date
260         final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().toAbsoluteDate().shiftedBy(-primaryTauU.getValue());
261         final TimeStampedPVCoordinates primaryDeparture =
262                         primaryToInertApprox.shiftedBy(emissionDate.durationFrom(primaryToInertApprox.getDate())).
263                         transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO)).
264                         toTimeStampedPVCoordinates();
265 
266         // Total time of flight for leg 1
267         final Gradient tauLeg1 = secondaryTauD.add(primaryTauU);
268 
269 
270         // --
271         // Evaluate the turn-around range value and its derivatives
272         // --------------------------------------------------------
273 
274         // The state we use to define the estimated measurement is a middle ground between the two transit states
275         // This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
276         // Thus we define the state at the date t" = date of rebound of the signal at the secondary station
277         // Or t" = t -primaryTauD -secondaryTauU
278         // The iterative process in the estimation ensures that, after several iterations, the date stamped in the
279         // state S in input of this function will be close to t"
280         // Therefore we will shift state S by:
281         //  - +secondaryTauU to get transitStateLeg2
282         //  - -secondaryTauD to get transitStateLeg1
283         final EstimatedMeasurement<TurnAroundRange> estimated =
284                         new EstimatedMeasurement<>(this, iteration, evaluation,
285                                                    new SpacecraftState[] {
286                                                        transitStateLeg2.shiftedBy(-secondaryTauU.getValue())
287                                                    },
288                                                    new TimeStampedPVCoordinates[] {
289                                                        primaryDeparture,
290                                                        transitStateLeg1PV.toTimeStampedPVCoordinates(),
291                                                        secondaryRebound.toTimeStampedPVCoordinates(),
292                                                        transitStateLeg2.getPVCoordinates(),
293                                                        primaryArrival.toTimeStampedPVCoordinates()
294                                                    });
295 
296         // Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
297         final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
298         final Gradient turnAroundRange = (tauLeg2.add(tauLeg1)).multiply(cOver2);
299         estimated.setEstimatedValue(turnAroundRange.getValue());
300 
301         // Turn-around range partial derivatives with respect to state
302         final double[] derivatives = turnAroundRange.getGradient();
303         estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
304 
305         // set partial derivatives with respect to parameters
306         // (beware element at index 0 is the value, not a derivative)
307         for (final ParameterDriver driver : getParametersDrivers()) {
308             final Integer index = indices.get(driver.getName());
309             if (index != null) {
310                 estimated.setParameterDerivatives(driver, derivatives[index]);
311             }
312         }
313 
314         return estimated;
315 
316     }
317 
318 }