Package org.orekit.rugged.adjustment
Class GroundOptimizationProblemBuilder
- java.lang.Object
-
- org.orekit.rugged.adjustment.GroundOptimizationProblemBuilder
-
public class GroundOptimizationProblemBuilder extends Object
Ground optimization problem builder. builds the optimization problem relying on ground measurements.- Since:
- 2.0
- Author:
- Guylaine Prat, Lucie Labat Allee, Jonathan Guinet, Luc Maisonobe
-
-
Field Summary
Fields Modifier and Type Field Description protected static int
ESTIMATION_LINE_RANGE_MARGIN
Margin used in parameters estimation for the inverse location lines range.
-
Constructor Summary
Constructors Constructor Description GroundOptimizationProblemBuilder(List<LineSensor> sensors, Observables measurements, Rugged rugged)
Build a new instance of the optimization problem.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description LeastSquaresProblem
build(int maxEvaluations, double convergenceThreshold)
Least square problem builder.protected MultivariateJacobianFunction
createFunction()
Create the model function value and its Jacobian.protected void
createTargetAndWeight()
Create targets and weights of optimization problem.protected List<ParameterDriver>
getDrivers()
Get the parameters drivers list.protected DerivativeGenerator<Gradient>
getGenerator()
Get the derivative structure generator.protected Observables
getMeasurements()
Get the measurements.protected int
getNbParams()
Get the number of parameters to refine.protected List<LineSensor>
getSensors()
Get the sensors list.protected void
initMapping()
Parse the observables to select mapping .
-
-
-
Field Detail
-
ESTIMATION_LINE_RANGE_MARGIN
protected static final int ESTIMATION_LINE_RANGE_MARGIN
Margin used in parameters estimation for the inverse location lines range.- See Also:
- Constant Field Values
-
-
Constructor Detail
-
GroundOptimizationProblemBuilder
public GroundOptimizationProblemBuilder(List<LineSensor> sensors, Observables measurements, Rugged rugged)
Build a new instance of the optimization problem.- Parameters:
sensors
- list of sensors to refinemeasurements
- set of observablesrugged
- name of rugged to refine
-
-
Method Detail
-
initMapping
protected void initMapping()
Parse the observables to select mapping .
-
createTargetAndWeight
protected void createTargetAndWeight()
Create targets and weights of optimization problem.
-
createFunction
protected MultivariateJacobianFunction createFunction()
Create the model function value and its Jacobian.- Returns:
- the model function value and its Jacobian
-
build
public final LeastSquaresProblem build(int maxEvaluations, double convergenceThreshold)
Least square problem builder.- Parameters:
maxEvaluations
- maxIterations and evaluationsconvergenceThreshold
- parameter convergence threshold- Returns:
- the least square problem
-
getSensors
protected List<LineSensor> getSensors()
Get the sensors list.- Returns:
- the sensors list
-
getNbParams
protected final int getNbParams()
Get the number of parameters to refine.- Returns:
- the number of parameters to refine
-
getDrivers
protected final List<ParameterDriver> getDrivers()
Get the parameters drivers list.- Returns:
- the selected list of parameters driver
-
getGenerator
protected final DerivativeGenerator<Gradient> getGenerator()
Get the derivative structure generator.- Returns:
- the derivative structure generator.
-
getMeasurements
protected Observables getMeasurements()
Get the measurements.- Returns:
- the measurements
-
-