AdjustmentContext.java
/* Copyright 2013-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.rugged.adjustment;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
import org.orekit.rugged.adjustment.measurements.Observables;
import org.orekit.rugged.api.Rugged;
import org.orekit.rugged.errors.RuggedException;
import org.orekit.rugged.errors.RuggedMessages;
import org.orekit.rugged.linesensor.LineSensor;
/** Create adjustment context for viewing model refining.
* @author Lucie LabatAllee
* @author Jonathan Guinet
* @author Luc Maisonobe
* @author Guylaine Prat
* @since 2.0
*/
public class AdjustmentContext {
/** List of Rugged instances to optimize. */
private final Map<String, Rugged> viewingModel;
/** Set of measurements. */
private final Observables measurements;
/** Least square optimizer choice.*/
private OptimizerId optimizerID;
/** Build a new instance.
* The default optimizer is Gauss Newton with QR decomposition.
* @param viewingModel viewing model
* @param measurements control and tie points
*/
public AdjustmentContext(final Collection<Rugged> viewingModel, final Observables measurements) {
this.viewingModel = new HashMap<String, Rugged>();
for (final Rugged r : viewingModel) {
this.viewingModel.put(r.getName(), r);
}
this.measurements = measurements;
this.optimizerID = OptimizerId.GAUSS_NEWTON_QR;
}
/** Setter for optimizer algorithm.
* @param optimizerId the chosen algorithm
*/
public void setOptimizer(final OptimizerId optimizerId)
{
this.optimizerID = optimizerId;
}
/**
* Estimate the free parameters in viewing model to match specified sensor
* to ground mappings.
* <p>
* This method is typically used for calibration of on-board sensor
* parameters, like rotation angles polynomial coefficients.
* </p>
* <p>
* Before using this method, the {@link org.orekit.utils.ParameterDriver viewing model
* parameters} retrieved by calling the
* {@link LineSensor#getParametersDrivers() getParametersDrivers()} method
* on the desired sensors must be configured. The parameters that should be
* estimated must have their {@link org.orekit.utils.ParameterDriver#setSelected(boolean)
* selection status} set to {@code true} whereas the parameters that should
* retain their current value must have their
* {@link org.orekit.utils.ParameterDriver#setSelected(boolean) selection status} set to
* {@code false}. If needed, the {@link org.orekit.utils.ParameterDriver#setValue(double)
* value} of the estimated/selected parameters can also be changed before
* calling the method, as this value will serve as the initial value in the
* estimation process.
* </p>
* <p>
* The method solves a least-squares problem to minimize the residuals
* between test locations and the reference mappings by adjusting the
* selected viewing models parameters.
* </p>
* <p>
* The estimated parameters can be retrieved after the method completes by
* calling again the {@link LineSensor#getParametersDrivers()
* getParametersDrivers()} method on the desired sensors and checking the
* updated values of the parameters. In fact, as the values of the
* parameters are already updated by this method, if users want to use the
* updated values immediately to perform new direct/inverse locations, they
* can do so without looking at the parameters: the viewing models are
* already aware of the updated parameters.
* </p>
*
* @param ruggedNameList list of rugged to refine
* @param maxEvaluations maximum number of evaluations
* @param parametersConvergenceThreshold convergence threshold on normalized
* parameters (dimensionless, related to parameters scales)
* @return optimum of the least squares problem
*/
public Optimum estimateFreeParameters(final Collection<String> ruggedNameList, final int maxEvaluations,
final double parametersConvergenceThreshold) {
final List<Rugged> ruggedList = new ArrayList<Rugged>();
final List<LineSensor> selectedSensors = new ArrayList<LineSensor>();
for (String ruggedName : ruggedNameList) {
final Rugged rugged = this.viewingModel.get(ruggedName);
if (rugged == null) {
throw new RuggedException(RuggedMessages.INVALID_RUGGED_NAME);
}
ruggedList.add(rugged);
selectedSensors.addAll(rugged.getLineSensors());
}
final LeastSquareAdjuster adjuster = new LeastSquareAdjuster(this.optimizerID);
LeastSquaresProblem theProblem = null;
// builder
switch (ruggedList.size()) {
case 1:
final Rugged rugged = ruggedList.get(0);
final GroundOptimizationProblemBuilder groundOptimizationProblem = new GroundOptimizationProblemBuilder(selectedSensors, measurements, rugged);
theProblem = groundOptimizationProblem.build(maxEvaluations, parametersConvergenceThreshold);
break;
case 2:
final InterSensorsOptimizationProblemBuilder interSensorsOptimizationProblem = new InterSensorsOptimizationProblemBuilder(selectedSensors, measurements, ruggedList);
theProblem = interSensorsOptimizationProblem.build(maxEvaluations, parametersConvergenceThreshold);
break;
default :
throw new RuggedException(RuggedMessages.UNSUPPORTED_REFINING_CONTEXT, ruggedList.size());
}
return adjuster.optimize(theProblem);
}
}