PVCoordinates.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import org.hipparchus.analysis.differentiation.DSFactory;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.DerivativeStructure;
- import org.hipparchus.analysis.differentiation.UnivariateDerivative1;
- import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.Blendable;
- import org.hipparchus.util.FastMath;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.time.TimeShiftable;
- /** Simple container for Position/Velocity/Acceleration triplets.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple quadratic model. It is <em>not</em> intended as a replacement for
- * proper orbit propagation (it is not even Keplerian!) but should be sufficient
- * for either small time shifts or coarse accuracy.
- * </p>
- * <p>
- * This class is the angular counterpart to {@link AngularCoordinates}.
- * </p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @author Fabien Maussion
- * @author Luc Maisonobe
- */
- public class PVCoordinates implements TimeShiftable<PVCoordinates>, Blendable<PVCoordinates> {
- /** Fixed position/velocity at origin (both p, v and a are zero vectors). */
- public static final PVCoordinates ZERO = new PVCoordinates(Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO);
- /** The position. */
- private final Vector3D position;
- /** The velocity. */
- private final Vector3D velocity;
- /** The acceleration. */
- private final Vector3D acceleration;
- /** Simple constructor.
- * <p> Set the Coordinates to default : (0 0 0), (0 0 0), (0 0 0).</p>
- */
- public PVCoordinates() {
- position = Vector3D.ZERO;
- velocity = Vector3D.ZERO;
- acceleration = Vector3D.ZERO;
- }
- /** Builds a PVCoordinates triplet with zero acceleration.
- * <p>Acceleration is set to zero</p>
- * @param position the position vector (m)
- * @param velocity the velocity vector (m/s)
- */
- public PVCoordinates(final Vector3D position, final Vector3D velocity) {
- this.position = position;
- this.velocity = velocity;
- this.acceleration = Vector3D.ZERO;
- }
- /** Builds a PVCoordinates triplet.
- * @param position the position vector (m)
- * @param velocity the velocity vector (m/s)
- * @param acceleration the acceleration vector (m/s²)
- */
- public PVCoordinates(final Vector3D position, final Vector3D velocity, final Vector3D acceleration) {
- this.position = position;
- this.velocity = velocity;
- this.acceleration = acceleration;
- }
- /** Multiplicative constructor.
- * <p>Build a PVCoordinates from another one and a scale factor.</p>
- * <p>The PVCoordinates built will be a * pv</p>
- * @param a scale factor
- * @param pv base (unscaled) PVCoordinates
- */
- public PVCoordinates(final double a, final PVCoordinates pv) {
- position = new Vector3D(a, pv.position);
- velocity = new Vector3D(a, pv.velocity);
- acceleration = new Vector3D(a, pv.acceleration);
- }
- /** Subtractive constructor.
- * <p>Build a relative PVCoordinates from a start and an end position.</p>
- * <p>The PVCoordinates built will be end - start.</p>
- * @param start Starting PVCoordinates
- * @param end ending PVCoordinates
- */
- public PVCoordinates(final PVCoordinates start, final PVCoordinates end) {
- this.position = end.position.subtract(start.position);
- this.velocity = end.velocity.subtract(start.velocity);
- this.acceleration = end.acceleration.subtract(start.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- */
- public PVCoordinates(final double a1, final PVCoordinates pv1,
- final double a2, final PVCoordinates pv2) {
- position = new Vector3D(a1, pv1.position, a2, pv2.position);
- velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity);
- acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- */
- public PVCoordinates(final double a1, final PVCoordinates pv1,
- final double a2, final PVCoordinates pv2,
- final double a3, final PVCoordinates pv3) {
- position = new Vector3D(a1, pv1.position, a2, pv2.position, a3, pv3.position);
- velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity);
- acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration);
- }
- /** Linear constructor.
- * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p>
- * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p>
- * @param a1 first scale factor
- * @param pv1 first base (unscaled) PVCoordinates
- * @param a2 second scale factor
- * @param pv2 second base (unscaled) PVCoordinates
- * @param a3 third scale factor
- * @param pv3 third base (unscaled) PVCoordinates
- * @param a4 fourth scale factor
- * @param pv4 fourth base (unscaled) PVCoordinates
- */
- public PVCoordinates(final double a1, final PVCoordinates pv1,
- final double a2, final PVCoordinates pv2,
- final double a3, final PVCoordinates pv3,
- final double a4, final PVCoordinates pv4) {
- position = new Vector3D(a1, pv1.position, a2, pv2.position,
- a3, pv3.position, a4, pv4.position);
- velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity,
- a3, pv3.velocity, a4, pv4.velocity);
- acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration,
- a3, pv3.acceleration, a4, pv4.acceleration);
- }
- /** Builds a PVCoordinates triplet from a {@link FieldVector3D}<{@link Derivative}>.
- * <p>
- * The vector components must have time as their only derivation parameter and
- * have consistent derivation orders.
- * </p>
- * @param p vector with time-derivatives embedded within the coordinates
- * @param <U> type of the derivative
- */
- public <U extends Derivative<U>> PVCoordinates(final FieldVector3D<U> p) {
- position = new Vector3D(p.getX().getReal(), p.getY().getReal(), p.getZ().getReal());
- if (p.getX().getOrder() >= 1) {
- velocity = new Vector3D(p.getX().getPartialDerivative(1),
- p.getY().getPartialDerivative(1),
- p.getZ().getPartialDerivative(1));
- if (p.getX().getOrder() >= 2) {
- acceleration = new Vector3D(p.getX().getPartialDerivative(2),
- p.getY().getPartialDerivative(2),
- p.getZ().getPartialDerivative(2));
- } else {
- acceleration = Vector3D.ZERO;
- }
- } else {
- velocity = Vector3D.ZERO;
- acceleration = Vector3D.ZERO;
- }
- }
- /**
- * Builds PV coordinates with the givne position, zero velocity, and zero
- * acceleration.
- *
- * @param position position vector (m)
- */
- public PVCoordinates(final Vector3D position) {
- this(position, Vector3D.ZERO);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link DerivativeStructure}>.
- * <p>
- * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
- * to the user-specified order.
- * </p>
- * @param order derivation order for the vector components (must be either 0, 1 or 2)
- * @return vector with time-derivatives embedded within the coordinates
- */
- public FieldVector3D<DerivativeStructure> toDerivativeStructureVector(final int order) {
- final DSFactory factory;
- final DerivativeStructure x;
- final DerivativeStructure y;
- final DerivativeStructure z;
- switch (order) {
- case 0 :
- factory = new DSFactory(1, order);
- x = factory.build(position.getX());
- y = factory.build(position.getY());
- z = factory.build(position.getZ());
- break;
- case 1 :
- factory = new DSFactory(1, order);
- x = factory.build(position.getX(), velocity.getX());
- y = factory.build(position.getY(), velocity.getY());
- z = factory.build(position.getZ(), velocity.getZ());
- break;
- case 2 :
- factory = new DSFactory(1, order);
- x = factory.build(position.getX(), velocity.getX(), acceleration.getX());
- y = factory.build(position.getY(), velocity.getY(), acceleration.getY());
- z = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
- break;
- default :
- throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
- }
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link UnivariateDerivative1}>.
- * <p>
- * The {@link UnivariateDerivative1} coordinates correspond to time-derivatives up
- * to the order 1.
- * </p>
- * @return vector with time-derivatives embedded within the coordinates
- * @see #toUnivariateDerivative2Vector()
- * @since 10.2
- */
- public FieldVector3D<UnivariateDerivative1> toUnivariateDerivative1Vector() {
- final UnivariateDerivative1 x = new UnivariateDerivative1(position.getX(), velocity.getX());
- final UnivariateDerivative1 y = new UnivariateDerivative1(position.getY(), velocity.getY());
- final UnivariateDerivative1 z = new UnivariateDerivative1(position.getZ(), velocity.getZ());
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldVector3D}<{@link UnivariateDerivative2}>.
- * <p>
- * The {@link UnivariateDerivative2} coordinates correspond to time-derivatives up
- * to the order 2.
- * </p>
- * @return vector with time-derivatives embedded within the coordinates
- * @see #toUnivariateDerivative1Vector()
- * @since 10.2
- */
- public FieldVector3D<UnivariateDerivative2> toUnivariateDerivative2Vector() {
- final UnivariateDerivative2 x = new UnivariateDerivative2(position.getX(), velocity.getX(), acceleration.getX());
- final UnivariateDerivative2 y = new UnivariateDerivative2(position.getY(), velocity.getY(), acceleration.getY());
- final UnivariateDerivative2 z = new UnivariateDerivative2(position.getZ(), velocity.getZ(), acceleration.getZ());
- return new FieldVector3D<>(x, y, z);
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link DerivativeStructure}>.
- * <p>
- * The {@link DerivativeStructure} coordinates correspond to time-derivatives up
- * to the user-specified order. As both the instance components {@link #getPosition() position},
- * {@link #getVelocity() velocity} and {@link #getAcceleration() acceleration} and the
- * {@link DerivativeStructure#getPartialDerivative(int...) derivatives} of the components
- * holds time-derivatives, there are several ways to retrieve these derivatives. If for example
- * the {@code order} is set to 2, then both {@code pv.getPosition().getX().getPartialDerivative(2)},
- * {@code pv.getVelocity().getX().getPartialDerivative(1)} and
- * {@code pv.getAcceleration().getX().getValue()} return the exact same value.
- * </p>
- * <p>
- * If derivation order is 1, the first derivative of acceleration will be computed as a
- * Keplerian-only jerk. If derivation order is 2, the second derivative of velocity (which
- * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
- * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
- * </p>
- * @param order derivation order for the vector components (must be either 0, 1 or 2)
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 9.2
- */
- public FieldPVCoordinates<DerivativeStructure> toDerivativeStructurePV(final int order) {
- final DSFactory factory;
- final DerivativeStructure x0;
- final DerivativeStructure y0;
- final DerivativeStructure z0;
- final DerivativeStructure x1;
- final DerivativeStructure y1;
- final DerivativeStructure z1;
- final DerivativeStructure x2;
- final DerivativeStructure y2;
- final DerivativeStructure z2;
- switch (order) {
- case 0 :
- factory = new DSFactory(1, order);
- x0 = factory.build(position.getX());
- y0 = factory.build(position.getY());
- z0 = factory.build(position.getZ());
- x1 = factory.build(velocity.getX());
- y1 = factory.build(velocity.getY());
- z1 = factory.build(velocity.getZ());
- x2 = factory.build(acceleration.getX());
- y2 = factory.build(acceleration.getY());
- z2 = factory.build(acceleration.getZ());
- break;
- case 1 : {
- factory = new DSFactory(1, order);
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double pvOr2 = Vector3D.dotProduct(position, velocity) / r2;
- final double a = acceleration.getNorm();
- final double aOr = a / r;
- final Vector3D keplerianJerk = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
- x0 = factory.build(position.getX(), velocity.getX());
- y0 = factory.build(position.getY(), velocity.getY());
- z0 = factory.build(position.getZ(), velocity.getZ());
- x1 = factory.build(velocity.getX(), acceleration.getX());
- y1 = factory.build(velocity.getY(), acceleration.getY());
- z1 = factory.build(velocity.getZ(), acceleration.getZ());
- x2 = factory.build(acceleration.getX(), keplerianJerk.getX());
- y2 = factory.build(acceleration.getY(), keplerianJerk.getY());
- z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ());
- break;
- }
- case 2 : {
- factory = new DSFactory(1, order);
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double pvOr2 = Vector3D.dotProduct(position, velocity) / r2;
- final double a = acceleration.getNorm();
- final double aOr = a / r;
- final Vector3D keplerianJerk = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
- final double v2 = velocity.getNormSq();
- final double pa = Vector3D.dotProduct(position, acceleration);
- final double aj = Vector3D.dotProduct(acceleration, keplerianJerk);
- final Vector3D keplerianJounce = new Vector3D(-3 * (v2 + pa) / r2 + 15 * pvOr2 * pvOr2 - aOr, acceleration,
- 4 * aOr * pvOr2 - aj / (a * r), velocity);
- x0 = factory.build(position.getX(), velocity.getX(), acceleration.getX());
- y0 = factory.build(position.getY(), velocity.getY(), acceleration.getY());
- z0 = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ());
- x1 = factory.build(velocity.getX(), acceleration.getX(), keplerianJerk.getX());
- y1 = factory.build(velocity.getY(), acceleration.getY(), keplerianJerk.getY());
- z1 = factory.build(velocity.getZ(), acceleration.getZ(), keplerianJerk.getZ());
- x2 = factory.build(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
- y2 = factory.build(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
- z2 = factory.build(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
- break;
- }
- default :
- throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order);
- }
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link UnivariateDerivative1}>.
- * <p>
- * The {@link UnivariateDerivative1} coordinates correspond to time-derivatives up
- * to the order 1.
- * The first derivative of acceleration will be computed as a Keplerian-only jerk.
- * </p>
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 10.2
- */
- public FieldPVCoordinates<UnivariateDerivative1> toUnivariateDerivative1PV() {
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double pvOr2 = Vector3D.dotProduct(position, velocity) / r2;
- final double a = acceleration.getNorm();
- final double aOr = a / r;
- final Vector3D keplerianJerk = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
- final UnivariateDerivative1 x0 = new UnivariateDerivative1(position.getX(), velocity.getX());
- final UnivariateDerivative1 y0 = new UnivariateDerivative1(position.getY(), velocity.getY());
- final UnivariateDerivative1 z0 = new UnivariateDerivative1(position.getZ(), velocity.getZ());
- final UnivariateDerivative1 x1 = new UnivariateDerivative1(velocity.getX(), acceleration.getX());
- final UnivariateDerivative1 y1 = new UnivariateDerivative1(velocity.getY(), acceleration.getY());
- final UnivariateDerivative1 z1 = new UnivariateDerivative1(velocity.getZ(), acceleration.getZ());
- final UnivariateDerivative1 x2 = new UnivariateDerivative1(acceleration.getX(), keplerianJerk.getX());
- final UnivariateDerivative1 y2 = new UnivariateDerivative1(acceleration.getY(), keplerianJerk.getY());
- final UnivariateDerivative1 z2 = new UnivariateDerivative1(acceleration.getZ(), keplerianJerk.getZ());
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Transform the instance to a {@link FieldPVCoordinates}<{@link UnivariateDerivative2}>.
- * <p>
- * The {@link UnivariateDerivative2} coordinates correspond to time-derivatives up
- * to the order 2.
- * As derivation order is 2, the second derivative of velocity (which
- * is also the first derivative of acceleration) will be computed as a Keplerian-only jerk,
- * and the second derivative of acceleration will be computed as a Keplerian-only jounce.
- * </p>
- * @return pv coordinates with time-derivatives embedded within the coordinates
- * @since 10.2
- */
- public FieldPVCoordinates<UnivariateDerivative2> toUnivariateDerivative2PV() {
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double pvOr2 = Vector3D.dotProduct(position, velocity) / r2;
- final double a = acceleration.getNorm();
- final double aOr = a / r;
- final Vector3D keplerianJerk = new Vector3D(-3 * pvOr2, acceleration, -aOr, velocity);
- final double v2 = velocity.getNormSq();
- final double pa = Vector3D.dotProduct(position, acceleration);
- final double aj = Vector3D.dotProduct(acceleration, keplerianJerk);
- final Vector3D keplerianJounce = new Vector3D(-3 * (v2 + pa) / r2 + 15 * pvOr2 * pvOr2 - aOr, acceleration,
- 4 * aOr * pvOr2 - aj / (a * r), velocity);
- final UnivariateDerivative2 x0 = new UnivariateDerivative2(position.getX(), velocity.getX(), acceleration.getX());
- final UnivariateDerivative2 y0 = new UnivariateDerivative2(position.getY(), velocity.getY(), acceleration.getY());
- final UnivariateDerivative2 z0 = new UnivariateDerivative2(position.getZ(), velocity.getZ(), acceleration.getZ());
- final UnivariateDerivative2 x1 = new UnivariateDerivative2(velocity.getX(), acceleration.getX(), keplerianJerk.getX());
- final UnivariateDerivative2 y1 = new UnivariateDerivative2(velocity.getY(), acceleration.getY(), keplerianJerk.getY());
- final UnivariateDerivative2 z1 = new UnivariateDerivative2(velocity.getZ(), acceleration.getZ(), keplerianJerk.getZ());
- final UnivariateDerivative2 x2 = new UnivariateDerivative2(acceleration.getX(), keplerianJerk.getX(), keplerianJounce.getX());
- final UnivariateDerivative2 y2 = new UnivariateDerivative2(acceleration.getY(), keplerianJerk.getY(), keplerianJounce.getY());
- final UnivariateDerivative2 z2 = new UnivariateDerivative2(acceleration.getZ(), keplerianJerk.getZ(), keplerianJounce.getZ());
- return new FieldPVCoordinates<>(new FieldVector3D<>(x0, y0, z0),
- new FieldVector3D<>(x1, y1, z1),
- new FieldVector3D<>(x2, y2, z2));
- }
- /** Estimate velocity between two positions.
- * <p>Estimation is based on a simple fixed velocity translation
- * during the time interval between the two positions.</p>
- * @param start start position
- * @param end end position
- * @param dt time elapsed between the dates of the two positions
- * @return velocity allowing to go from start to end positions
- */
- public static Vector3D estimateVelocity(final Vector3D start, final Vector3D end, final double dt) {
- final double scale = 1.0 / dt;
- return new Vector3D(scale, end, -scale, start);
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple Taylor expansion. It is <em>not</em> intended as a replacement for
- * proper orbit propagation (it is not even Keplerian!) but should be sufficient
- * for either small time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public PVCoordinates shiftedBy(final double dt) {
- return new PVCoordinates(positionShiftedBy(dt),
- new Vector3D(1, velocity, dt, acceleration),
- acceleration);
- }
- /**
- * Get a time-shifted position. Same as {@link #shiftedBy(double)} except
- * that only the sifted position is returned.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple Taylor expansion. It is <em>not</em> intended as a replacement
- * for proper orbit propagation (it is not even Keplerian!) but should be
- * sufficient for either small time shifts or coarse accuracy.
- * </p>
- *
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is
- * immutable)
- */
- public Vector3D positionShiftedBy(final double dt) {
- return new Vector3D(1, position, dt, velocity, 0.5 * dt * dt, acceleration);
- }
- /** Gets the position.
- * @return the position vector (m).
- */
- public Vector3D getPosition() {
- return position;
- }
- /** Gets the velocity.
- * @return the velocity vector (m/s).
- */
- public Vector3D getVelocity() {
- return velocity;
- }
- /** Gets the acceleration.
- * @return the acceleration vector (m/s²).
- */
- public Vector3D getAcceleration() {
- return acceleration;
- }
- /** Gets the momentum.
- * <p>This vector is the p ⊗ v where p is position, v is velocity
- * and ⊗ is cross product. To get the real physical angular momentum
- * you need to multiply this vector by the mass.</p>
- * <p>The returned vector is recomputed each time this method is called, it
- * is not cached.</p>
- * @return a new instance of the momentum vector (m²/s).
- */
- public Vector3D getMomentum() {
- return Vector3D.crossProduct(position, velocity);
- }
- /**
- * Get the angular velocity (spin) of this point as seen from the origin.
- *
- * <p> The angular velocity vector is parallel to the {@link #getMomentum()
- * angular momentum} and is computed by ω = p × v / ||p||²
- *
- * @return the angular velocity vector
- * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on
- * Wikipedia</a>
- */
- public Vector3D getAngularVelocity() {
- return this.getMomentum().scalarMultiply(1.0 / this.getPosition().getNormSq());
- }
- /** Get the opposite of the instance.
- * @return a new position-velocity which is opposite to the instance
- */
- public PVCoordinates negate() {
- return new PVCoordinates(position.negate(), velocity.negate(), acceleration.negate());
- }
- /** Normalize the position part of the instance.
- * <p>
- * The computed coordinates first component (position) will be a
- * normalized vector, the second component (velocity) will be the
- * derivative of the first component (hence it will generally not
- * be normalized), and the third component (acceleration) will be the
- * derivative of the second component (hence it will generally not
- * be normalized).
- * </p>
- * @return a new instance, with first component normalized and
- * remaining component computed to have consistent derivatives
- */
- public PVCoordinates normalize() {
- final double inv = 1.0 / position.getNorm();
- final Vector3D u = new Vector3D(inv, position);
- final Vector3D v = new Vector3D(inv, velocity);
- final Vector3D w = new Vector3D(inv, acceleration);
- final double uv = Vector3D.dotProduct(u, v);
- final double v2 = Vector3D.dotProduct(v, v);
- final double uw = Vector3D.dotProduct(u, w);
- final Vector3D uDot = new Vector3D(1, v, -uv, u);
- final Vector3D uDotDot = new Vector3D(1, w, -2 * uv, v, 3 * uv * uv - v2 - uw, u);
- return new PVCoordinates(u, uDot, uDotDot);
- }
- /** Compute the cross-product of two instances.
- * @param pv1 first instances
- * @param pv2 second instances
- * @return the cross product v1 ^ v2 as a new instance
- */
- public static PVCoordinates crossProduct(final PVCoordinates pv1, final PVCoordinates pv2) {
- final Vector3D p1 = pv1.position;
- final Vector3D v1 = pv1.velocity;
- final Vector3D a1 = pv1.acceleration;
- final Vector3D p2 = pv2.position;
- final Vector3D v2 = pv2.velocity;
- final Vector3D a2 = pv2.acceleration;
- return new PVCoordinates(Vector3D.crossProduct(p1, p2),
- new Vector3D(1, Vector3D.crossProduct(p1, v2),
- 1, Vector3D.crossProduct(v1, p2)),
- new Vector3D(1, Vector3D.crossProduct(p1, a2),
- 2, Vector3D.crossProduct(v1, v2),
- 1, Vector3D.crossProduct(a1, p2)));
- }
- /** Return a string representation of this position/velocity pair.
- * @return string representation of this position/velocity pair
- */
- public String toString() {
- final String comma = ", ";
- return new StringBuilder().append('{').append("P(").
- append(position.getX()).append(comma).
- append(position.getY()).append(comma).
- append(position.getZ()).append("), V(").
- append(velocity.getX()).append(comma).
- append(velocity.getY()).append(comma).
- append(velocity.getZ()).append("), A(").
- append(acceleration.getX()).append(comma).
- append(acceleration.getY()).append(comma).
- append(acceleration.getZ()).append(")}").toString();
- }
- /** {@inheritDoc} */
- @Override
- public PVCoordinates blendArithmeticallyWith(final PVCoordinates other, final double blendingValue)
- throws MathIllegalArgumentException {
- final Vector3D blendedPosition = position.blendArithmeticallyWith(other.position, blendingValue);
- final Vector3D blendedVelocity = velocity.blendArithmeticallyWith(other.velocity, blendingValue);
- final Vector3D blendedAcceleration = acceleration.blendArithmeticallyWith(other.acceleration, blendingValue);
- return new PVCoordinates(blendedPosition, blendedVelocity, blendedAcceleration);
- }
- }