FieldCjSjCoefficient.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.utilities;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.exception.NullArgumentException;
- import java.util.ArrayList;
- import java.util.List;
- /** Compute the S<sub>j</sub>(k, h) and the C<sub>j</sub>(k, h) series
- * and their partial derivatives with respect to k and h.
- * <p>
- * Those series are given in Danielson paper by expression 2.5.3-(5):
- *
- * <p> C<sub>j</sub>(k, h) + i S<sub>j</sub>(k, h) = (k+ih)<sup>j</sup>
- *
- * <p>
- * The C<sub>j</sub>(k, h) and the S<sub>j</sub>(k, h) elements are store as an
- * {@link ArrayList} of {@link Complex} number, the C<sub>j</sub>(k, h) being
- * represented by the real and the S<sub>j</sub>(k, h) by the imaginary part.
- * @param <T> type of the field elements
- */
- public class FieldCjSjCoefficient <T extends CalculusFieldElement<T>> {
- /** Zero for initialization. /*/
- private final T zero;
- /** Last computed order j. */
- private int jLast;
- /** Complex base (k + ih) of the C<sub>j</sub>, S<sub>j</sub> series. */
- private final FieldComplex<T> kih;
- /** List of computed elements. */
- private final List<FieldComplex<T>> cjsj;
- /** C<sub>j</sub>(k, h) and S<sub>j</sub>(k, h) constructor.
- * @param k k value
- * @param h h value
- * @param field field for fieldElements
- */
- public FieldCjSjCoefficient(final T k, final T h, final Field<T> field) {
- zero = field.getZero();
- kih = new FieldComplex<>(k, h);
- cjsj = new ArrayList<>();
- cjsj.add(new FieldComplex<>(zero.newInstance(1.), zero));
- cjsj.add(kih);
- jLast = 1;
- }
- /** Get the C<sub>j</sub> coefficient.
- * @param j order
- * @return C<sub>j</sub>
- */
- public T getCj(final int j) {
- if (j > jLast) {
- // Update to order j
- updateCjSj(j);
- }
- return cjsj.get(j).getReal();
- }
- /** Get the S<sub>j</sub> coefficient.
- * @param j order
- * @return S<sub>j</sub>
- */
- public T getSj(final int j) {
- if (j > jLast) {
- // Update to order j
- updateCjSj(j);
- }
- return cjsj.get(j).getImaginary();
- }
- /** Get the dC<sub>j</sub> / dk coefficient.
- * @param j order
- * @return dC<sub>j</sub> / d<sub>k</sub>
- */
- public T getDcjDk(final int j) {
- return j == 0 ? zero : getCj(j - 1).multiply(j);
- }
- /** Get the dS<sub>j</sub> / dk coefficient.
- * @param j order
- * @return dS<sub>j</sub> / d<sub>k</sub>
- */
- public T getDsjDk(final int j) {
- return j == 0 ? zero : getSj(j - 1).multiply(j);
- }
- /** Get the dC<sub>j</sub> / dh coefficient.
- * @param j order
- * @return dC<sub>i</sub> / d<sub>k</sub>
- */
- public T getDcjDh(final int j) {
- return j == 0 ? zero : getSj(j - 1).multiply(-j);
- }
- /** Get the dS<sub>j</sub> / dh coefficient.
- * @param j order
- * @return dS<sub>j</sub> / d<sub>h</sub>
- */
- public T getDsjDh(final int j) {
- return j == 0 ? zero : getCj(j - 1).multiply(j);
- }
- /** Update the cjsj up to order j.
- * @param j order
- */
- private void updateCjSj(final int j) {
- FieldComplex<T> last = cjsj.get(cjsj.size() - 1);
- for (int i = jLast; i < j; i++) {
- final FieldComplex<T> next = last.multiply(kih);
- cjsj.add(next);
- last = next;
- }
- jLast = j;
- }
- private static class FieldComplex <T extends CalculusFieldElement<T>> {
- /** The imaginary part. */
- private final T imaginary;
- /** The real part. */
- private final T real;
- /**
- * Create a complex number given the real and imaginary parts.
- *
- * @param real Real part.
- * @param imaginary Imaginary part.
- */
- FieldComplex(final T real, final T imaginary) {
- this.real = real;
- this.imaginary = imaginary;
- }
- /**
- * Access the real part.
- *
- * @return the real part.
- */
- public T getReal() {
- return real;
- }
- /**
- * Access the imaginary part.
- *
- * @return the imaginary part.
- */
- public T getImaginary() {
- return imaginary;
- }
- /**
- * Create a complex number given the real and imaginary parts.
- *
- * @param realPart Real part.
- * @param imaginaryPart Imaginary part.
- * @return a new complex number instance.
- *
- */
- protected FieldComplex<T> createComplex(final T realPart, final T imaginaryPart) {
- return new FieldComplex<>(realPart, imaginaryPart);
- }
- /**
- * Returns a {@code Complex} whose value is {@code this * factor}.
- * Implements preliminary checks for {@code NaN} and infinity followed by
- * the definitional formula:
- * <p>
- * {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i}
- * </p>
- * <p>
- * Returns finite values in components of the result per the definitional
- * formula in all remaining cases.</p>
- *
- * @param factor value to be multiplied by this {@code Complex}.
- * @return {@code this * factor}.
- * @throws NullArgumentException if {@code factor} is {@code null}.
- */
- public FieldComplex<T> multiply(final FieldComplex<T> factor) throws NullArgumentException {
- return createComplex(real.multiply(factor.real).subtract(imaginary.multiply(factor.imaginary)),
- real.multiply(factor.imaginary).add(imaginary.multiply(factor.real)));
- }
- }
- }