CoefficientsFactory.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.utilities;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.util.CombinatoricsUtils;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import java.util.SortedMap;
- import java.util.concurrent.ConcurrentSkipListMap;
- /**
- * This class is designed to provide coefficient from the DSST theory.
- *
- * @author Romain Di Costanzo
- */
- public class CoefficientsFactory {
- /** Internal storage of the polynomial values. Reused for further computation. */
- private static SortedMap<NSKey, Double> VNS = new ConcurrentSkipListMap<>();
- /** Last computed order for V<sub>ns</sub> coefficients. */
- private static int LAST_VNS_ORDER = 2;
- /** Static initialization for the V<sub>ns</sub> coefficient. */
- static {
- // Initialization
- VNS.put(new NSKey(0, 0), 1.);
- VNS.put(new NSKey(1, 0), 0.);
- VNS.put(new NSKey(1, 1), 0.5);
- }
- /** Private constructor as the class is a utility class.
- */
- private CoefficientsFactory() {
- }
- /** Compute the Q<sub>n,s</sub> coefficients evaluated at γ from the recurrence formula 2.8.3-(2).
- * <p>
- * Q<sub>n,s</sub> coefficients are computed for n = 0 to nMax
- * and s = 0 to sMax + 1 in order to also get the derivative dQ<sub>n,s</sub>/dγ = Q(n, s + 1)
- * </p>
- * @param gamma γ angle
- * @param nMax n max value
- * @param sMax s max value
- * @return Q<sub>n,s</sub> coefficients array
- */
- public static double[][] computeQns(final double gamma, final int nMax, final int sMax) {
- // Initialization
- final int sDim = FastMath.min(sMax + 1, nMax) + 1;
- final int rows = nMax + 1;
- final double[][] Qns = new double[rows][];
- for (int i = 0; i <= nMax; i++) {
- final int snDim = FastMath.min(i + 1, sDim);
- Qns[i] = new double[snDim];
- }
- // first element
- Qns[0][0] = 1;
- for (int n = 1; n <= nMax; n++) {
- final int snDim = FastMath.min(n + 1, sDim);
- for (int s = 0; s < snDim; s++) {
- if (n == s) {
- Qns[n][s] = (2. * s - 1.) * Qns[s - 1][s - 1];
- } else if (n == (s + 1)) {
- Qns[n][s] = (2. * s + 1.) * gamma * Qns[s][s];
- } else {
- Qns[n][s] = (2. * n - 1.) * gamma * Qns[n - 1][s] - (n + s - 1.) * Qns[n - 2][s];
- Qns[n][s] /= n - s;
- }
- }
- }
- return Qns;
- }
- /** Compute the Q<sub>n,s</sub> coefficients evaluated at γ from the recurrence formula 2.8.3-(2).
- * <p>
- * Q<sub>n,s</sub> coefficients are computed for n = 0 to nMax
- * and s = 0 to sMax + 1 in order to also get the derivative dQ<sub>n,s</sub>/dγ = Q(n, s + 1)
- * </p>
- * @param gamma γ angle
- * @param nMax n max value
- * @param sMax s max value
- * @param <T> the type of the field elements
- * @return Q<sub>n,s</sub> coefficients array
- */
- public static <T extends CalculusFieldElement<T>> T[][] computeQns(final T gamma, final int nMax, final int sMax) {
- // Initialization
- final int sDim = FastMath.min(sMax + 1, nMax) + 1;
- final int rows = nMax + 1;
- final T[][] Qns = MathArrays.buildArray(gamma.getField(), rows, FastMath.min(nMax + 1, sDim) - 1);
- for (int i = 0; i <= nMax; i++) {
- final int snDim = FastMath.min(i + 1, sDim);
- Qns[i] = MathArrays.buildArray(gamma.getField(), snDim);
- }
- // first element
- Qns[0][0] = gamma.subtract(gamma).add(1.);
- for (int n = 1; n <= nMax; n++) {
- final int snDim = FastMath.min(n + 1, sDim);
- for (int s = 0; s < snDim; s++) {
- if (n == s) {
- Qns[n][s] = Qns[s - 1][s - 1].multiply(2. * s - 1.);
- } else if (n == (s + 1)) {
- Qns[n][s] = Qns[s][s].multiply(gamma).multiply(2. * s + 1.);
- } else {
- Qns[n][s] = Qns[n - 1][s].multiply(gamma).multiply(2. * n - 1.).subtract(Qns[n - 2][s].multiply(n + s - 1.));
- Qns[n][s] = Qns[n][s].divide(n - s);
- }
- }
- }
- return Qns;
- }
- /** Compute recursively G<sub>s</sub> and H<sub>s</sub> polynomials from equation 3.1-(5).
- * @param k x-component of the eccentricity vector
- * @param h y-component of the eccentricity vector
- * @param alpha 1st direction cosine
- * @param beta 2nd direction cosine
- * @param order development order
- * @return Array of G<sub>s</sub> and H<sub>s</sub> polynomials for s from 0 to order.<br>
- * The 1st column contains the G<sub>s</sub> values.
- * The 2nd column contains the H<sub>s</sub> values.
- */
- public static double[][] computeGsHs(final double k, final double h,
- final double alpha, final double beta,
- final int order) {
- // Constant terms
- final double hamkb = h * alpha - k * beta;
- final double kaphb = k * alpha + h * beta;
- // Initialization
- final double[][] GsHs = new double[2][order + 1];
- GsHs[0][0] = 1.;
- GsHs[1][0] = 0.;
- for (int s = 1; s <= order; s++) {
- // Gs coefficient
- GsHs[0][s] = kaphb * GsHs[0][s - 1] - hamkb * GsHs[1][s - 1];
- // Hs coefficient
- GsHs[1][s] = hamkb * GsHs[0][s - 1] + kaphb * GsHs[1][s - 1];
- }
- return GsHs;
- }
- /** Compute recursively G<sub>s</sub> and H<sub>s</sub> polynomials from equation 3.1-(5).
- * @param k x-component of the eccentricity vector
- * @param h y-component of the eccentricity vector
- * @param alpha 1st direction cosine
- * @param beta 2nd direction cosine
- * @param order development order
- * @param field field of elements
- * @param <T> the type of the field elements
- * @return Array of G<sub>s</sub> and H<sub>s</sub> polynomials for s from 0 to order.<br>
- * The 1st column contains the G<sub>s</sub> values.
- * The 2nd column contains the H<sub>s</sub> values.
- */
- public static <T extends CalculusFieldElement<T>> T[][] computeGsHs(final T k, final T h,
- final T alpha, final T beta,
- final int order, final Field<T> field) {
- // Zero for initialization
- final T zero = field.getZero();
- // Constant terms
- final T hamkb = h.multiply(alpha).subtract(k.multiply(beta));
- final T kaphb = k.multiply(alpha).add(h.multiply(beta));
- // Initialization
- final T[][] GsHs = MathArrays.buildArray(field, 2, order + 1);
- GsHs[0][0] = zero.newInstance(1.);
- GsHs[1][0] = zero;
- for (int s = 1; s <= order; s++) {
- // Gs coefficient
- GsHs[0][s] = kaphb.multiply(GsHs[0][s - 1]).subtract(hamkb.multiply(GsHs[1][s - 1]));
- // Hs coefficient
- GsHs[1][s] = hamkb.multiply(GsHs[0][s - 1]).add(kaphb.multiply(GsHs[1][s - 1]));
- }
- return GsHs;
- }
- /** Compute the V<sub>n,s</sub> coefficients from 2.8.2-(1)(2).
- * @param order Order of the computation. Computation will be done from 0 to order -1
- * @return Map of the V<sub>n, s</sub> coefficients
- * @since 11.3.3
- */
- public static SortedMap<NSKey, Double> computeVns(final int order) {
- if (order > LAST_VNS_ORDER) {
- // Compute coefficient
- // Need previous computation as recurrence relation is done at s + 1 and n + 2
- final int min = FastMath.max(LAST_VNS_ORDER - 2, 0);
- for (int n = min; n < order; n++) {
- for (int s = 0; s < n + 1; s++) {
- if ((n - s) % 2 != 0) {
- VNS.put(new NSKey(n, s), 0.);
- } else {
- // s = n
- if (n == s && (s + 1) < order) {
- VNS.put(new NSKey(s + 1, s + 1), VNS.get(new NSKey(s, s)) / (2 * s + 2.));
- }
- // otherwise
- if ((n + 2) < order) {
- VNS.put(new NSKey(n + 2, s), VNS.get(new NSKey(n, s)) * (-n + s - 1.) / (n + s + 2.));
- }
- }
- }
- }
- LAST_VNS_ORDER = order;
- }
- return new ConcurrentSkipListMap<>(VNS);
- }
- /** Get the V<sub>n,s</sub><sup>m</sup> coefficient from V<sub>n,s</sub>.
- * <br>See § 2.8.2 in Danielson paper.
- * @param m m
- * @param n n
- * @param s s
- * @return The V<sub>n, s</sub> <sup>m</sup> coefficient
- */
- public static double getVmns(final int m, final int n, final int s) {
- if (m > n) {
- throw new OrekitException(OrekitMessages.DSST_VMNS_COEFFICIENT_ERROR_MS, m, n);
- }
- final double fns = CombinatoricsUtils.factorialDouble(n + FastMath.abs(s));
- final double fnm = CombinatoricsUtils.factorialDouble(n - m);
- double result = 0;
- // If (n - s) is odd, the Vmsn coefficient is null
- if ((n - s) % 2 == 0) {
- // Update the Vns coefficient
- if ((n + 1) > LAST_VNS_ORDER) {
- computeVns(n + 1);
- }
- if (s >= 0) {
- result = fns * VNS.get(new NSKey(n, s)) / fnm;
- } else {
- // If s < 0 : Vmn-s = (-1)^(-s) Vmns
- final int mops = (s % 2 == 0) ? 1 : -1;
- result = mops * fns * VNS.get(new NSKey(n, -s)) / fnm;
- }
- }
- return result;
- }
- /** Key formed by two integer values. */
- public static class NSKey implements Comparable<NSKey> {
- /** n value. */
- private final int n;
- /** s value. */
- private final int s;
- /** Simple constructor.
- * @param n n
- * @param s s
- */
- public NSKey(final int n, final int s) {
- this.n = n;
- this.s = s;
- }
- /** Get n.
- * @return n
- */
- public int getN() {
- return n;
- }
- /** Get s.
- * @return s
- */
- public int getS() {
- return s;
- }
- /** {@inheritDoc} */
- public int compareTo(final NSKey key) {
- int result = 1;
- if (n == key.n) {
- if (s < key.s) {
- result = -1;
- } else if (s == key.s) {
- result = 0;
- }
- } else if (n < key.n) {
- result = -1;
- }
- return result;
- }
- /** {@inheritDoc} */
- public boolean equals(final Object key) {
- if (key == this) {
- // first fast check
- return true;
- }
- if (key instanceof NSKey) {
- return n == ((NSKey) key).n && s == ((NSKey) key).s;
- }
- return false;
- }
- /** {@inheritDoc} */
- public int hashCode() {
- return 0x998493a6 ^ (n << 8) ^ s;
- }
- }
- }