HansenUtilities.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.utilities.hansen;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- /**
- * Utilities class.
- *
- * @author Lucian Barbulescu
- */
- public class HansenUtilities {
- /** 1 represented as a polynomial. */
- public static final PolynomialFunction ONE = new PolynomialFunction(new double[] {
- 1
- });
- /** 0 represented as a polynomial. */
- public static final PolynomialFunction ZERO = new PolynomialFunction(new double[] {
- 0
- });
- /** Private constructor as class is a utility.
- */
- private HansenUtilities() {
- }
- /**
- * Build the identity matrix of order 2.
- *
- * <pre>
- * / 1 0 \
- * I₂ = | |
- * \ 0 1 /
- * </pre>
- *
- * @return the identity matrix of order 2
- */
- public static PolynomialFunctionMatrix buildIdentityMatrix2() {
- final PolynomialFunctionMatrix matrix = new PolynomialFunctionMatrix(2);
- matrix.setMatrix(new PolynomialFunction[][] {
- {
- ONE, ZERO
- },
- {
- ZERO, ONE
- }
- });
- return matrix;
- }
- /**
- * Build the empty matrix of order 2.
- *
- * <pre>
- * / 0 0 \
- * E₂ = | |
- * \ 0 0 /
- * </pre>
- *
- * @return the identity matrix of order 2
- */
- public static PolynomialFunctionMatrix buildZeroMatrix2() {
- final PolynomialFunctionMatrix matrix = new PolynomialFunctionMatrix(2);
- matrix.setMatrix(new PolynomialFunction[][] {
- {
- ZERO, ZERO
- },
- {
- ZERO, ZERO
- }
- });
- return matrix;
- }
- /**
- * Build the identity matrix of order 4.
- *
- * <pre>
- * / 1 0 0 0 \
- * | |
- * | 0 1 0 0 |
- * I₄ = | |
- * | 0 0 1 0 |
- * | |
- * \ 0 0 0 1 /
- * </pre>
- *
- * @return the identity matrix of order 4
- */
- public static PolynomialFunctionMatrix buildIdentityMatrix4() {
- final PolynomialFunctionMatrix matrix = new PolynomialFunctionMatrix(4);
- matrix.setMatrix(new PolynomialFunction[][] {
- {
- ONE, ZERO, ZERO, ZERO
- },
- {
- ZERO, ONE, ZERO, ZERO
- },
- {
- ZERO, ZERO, ONE, ZERO
- },
- {
- ZERO, ZERO, ZERO, ONE
- }
- });
- return matrix;
- }
- /**
- * Build the empty matrix of order 4.
- *
- * <pre>
- * / 0 0 0 0 \
- * | |
- * | 0 0 0 0 |
- * E₄ = | |
- * | 0 0 0 0 |
- * | |
- * \ 0 0 0 0 /
- * </pre>
- *
- * @return the identity matrix of order 4
- */
- public static PolynomialFunctionMatrix buildZeroMatrix4() {
- final PolynomialFunctionMatrix matrix = new PolynomialFunctionMatrix(4);
- matrix.setMatrix(new PolynomialFunction[][] {
- {
- ZERO, ZERO, ZERO, ZERO
- },
- {
- ZERO, ZERO, ZERO, ZERO
- },
- {
- ZERO, ZERO, ZERO, ZERO
- },
- {
- ZERO, ZERO, ZERO, ZERO
- }
- } );
- return matrix;
- }
- /**
- * Compute polynomial coefficient a.
- *
- * <p>
- * It is used to generate the coefficient for K₀<sup>-n, s</sup> when computing K₀<sup>-n-1, s</sup>
- * and the coefficient for dK₀<sup>-n, s</sup> / de² when computing dK₀<sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(6) and Collins 4-242 and 4-245
- * </p>
- *
- * @param s the s coefficient
- * @param mnm1 -n-1 value
- * @return the polynomial
- */
- private static PolynomialFunction aZonal(final int s, final int mnm1) {
- // from recurrence Collins 4-242
- final double d1 = (mnm1 + 2) * (2 * mnm1 + 5);
- final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, d1 / d2
- });
- }
- /**
- * Compute polynomial coefficient b.
- *
- * <p>
- * It is used to generate the coefficient for K₀<sup>-n+1, s</sup> when computing K₀<sup>-n-1, s</sup>
- * and the coefficient for dK₀<sup>-n+1, s</sup> / de² when computing dK₀<sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(6) and Collins 4-242 and 4-245
- * </p>
- *
- * @param s the s coefficient
- * @param mnm1 -n-1 value
- * @return the polynomial
- */
- private static PolynomialFunction bZonal(final int s, final int mnm1) {
- // from recurence Collins 4-242
- final double d1 = (mnm1 + 2) * (mnm1 + 3);
- final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, -d1 / d2
- });
- }
- /**
- * Generate the polynomials needed in the linear transformation.
- *
- * @param n0 the index of the initial condition, Petre's paper
- * @param nMin rhe minimum value for the order
- * @param offset offset used to identify the polynomial that corresponds
- * to a negative value of n in the internal array that
- * starts at 0
- * @param slice number of coefficients that will be computed with a set
- * of roots
- * @param s the s coefficient
- * @param mpvec array to store the first vector of polynomials
- * associated to Hansen coefficients and derivatives.
- * @param mpvecDeriv array to store the second vector of polynomials
- * associated only to derivatives.
- * <p>
- * See Petre's paper
- * </p>
- */
- public static void generateZonalPolynomials(final int n0, final int nMin,
- final int offset, final int slice,
- final int s,
- final PolynomialFunction[][] mpvec,
- final PolynomialFunction[][] mpvecDeriv) {
- int sliceCounter = 0;
- int index;
- // Initialisation of matrix for linear transformmations
- // The final configuration of these matrix are obtained by composition
- // of linear transformations
- PolynomialFunctionMatrix A = HansenUtilities.buildIdentityMatrix2();
- PolynomialFunctionMatrix D = HansenUtilities.buildZeroMatrix2();
- PolynomialFunctionMatrix E = HansenUtilities.buildIdentityMatrix2();
- // generation of polynomials associated to Hansen coefficients and to
- // their derivatives
- final PolynomialFunctionMatrix a = HansenUtilities.buildZeroMatrix2();
- a.setElem(0, 1, HansenUtilities.ONE);
- //The B matrix is constant.
- final PolynomialFunctionMatrix B = HansenUtilities.buildZeroMatrix2();
- // from Collins 4-245 and Petre's paper
- B.setElem(1, 1, new PolynomialFunction(new double[] {
- 2.0
- }));
- for (int i = n0 - 1; i > nMin - 1; i--) {
- index = i + offset;
- // Matrix of the current linear transformation
- // Petre's paper
- a.setMatrixLine(1, new PolynomialFunction[] {
- bZonal(s, i), aZonal(s, i)
- });
- // composition of linear transformations
- // see Petre's paper
- A = A.multiply(a);
- // store the polynomials for Hansen coefficients
- mpvec[index] = A.getMatrixLine(1);
- D = D.multiply(a);
- E = E.multiply(a);
- D = D.add(E.multiply(B));
- // store the polynomials for Hansen coefficients from the expressions
- // of derivatives
- mpvecDeriv[index] = D.getMatrixLine(1);
- if (++sliceCounter % slice == 0) {
- // Re-Initialisation of matrix for linear transformmations
- // The final configuration of these matrix are obtained by composition
- // of linear transformations
- A = HansenUtilities.buildIdentityMatrix2();
- D = HansenUtilities.buildZeroMatrix2();
- E = HansenUtilities.buildIdentityMatrix2();
- }
- }
- }
- /**
- * Compute polynomial coefficient a.
- *
- * <p>
- * It is used to generate the coefficient for K<sub>j</sub><sup>-n, s</sup> when computing K<sub>j</sub><sup>-n-1, s</sup>
- * and the coefficient for dK<sub>j</sub><sup>-n, s</sup> / de² when computing dK<sub>j</sub><sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(9) and Collins 4-236 and 4-240
- * </p>
- *
- * @param s the s coefficient
- * @param mnm1 -n-1
- * @return the polynomial
- */
- private static PolynomialFunction aTesseral(final int s, final int mnm1) {
- // Collins 4-236, Danielson 2.7.3-(9)
- final double r1 = (mnm1 + 2.) * (2. * mnm1 + 5.);
- final double r2 = (2. + mnm1 + s) * (2. + mnm1 - s);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, r1 / r2
- });
- }
- /**
- * Compute polynomial coefficient b.
- *
- * <p>
- * It is used to generate the coefficient for K<sub>j</sub><sup>-n+1, s</sup> when computing K<sub>j</sub><sup>-n-1, s</sup>
- * and the coefficient for dK<sub>j</sub><sup>-n+1, s</sup> / de² when computing dK<sub>j</sub><sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(9) and Collins 4-236 and 4-240
- * </p>
- *
- * @param j the j coefficient
- * @param s the s coefficient
- * @param mnm1 -n-1
- * @return the polynomial
- */
- private static PolynomialFunction bTesseral(final int j, final int s, final int mnm1) {
- // Collins 4-236, Danielson 2.7.3-(9)
- final double r2 = (2. + mnm1 + s) * (2. + mnm1 - s);
- final double d1 = (mnm1 + 3.) * 2. * j * s / (r2 * (mnm1 + 4.));
- final double d2 = (mnm1 + 3.) * (mnm1 + 2.) / r2;
- return new PolynomialFunction(new double[] {
- 0.0, -d1, -d2
- });
- }
- /**
- * Compute polynomial coefficient c.
- *
- * <p>
- * It is used to generate the coefficient for K<sub>j</sub><sup>-n+3, s</sup> when computing K<sub>j</sub><sup>-n-1, s</sup>
- * and the coefficient for dK<sub>j</sub><sup>-n+3, s</sup> / de² when computing dK<sub>j</sub><sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(9) and Collins 4-236 and 4-240
- * </p>
- *
- * @param j the j coefficient
- * @param s the s coefficient
- * @param mnm1 -n-1
- * @return the polynomial
- */
- private static PolynomialFunction cTesseral(final int j, final int s, final int mnm1) {
- // Collins 4-236, Danielson 2.7.3-(9)
- final double r1 = j * j * (mnm1 + 2.);
- final double r2 = (mnm1 + 4.) * (2. + mnm1 + s) * (2. + mnm1 - s);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, r1 / r2
- });
- }
- /**
- * Compute polynomial coefficient d.
- * <p>
- * It is used to generate the coefficient for K<sub>j</sub><sup>-n-1,
- * s</sup> / dχ when computing dK<sub>j</sub><sup>-n-1, s</sup> / de²
- * </p>
- * <p>
- * See Danielson 2.7.3-(9) and Collins 4-236 and 4-240
- * </p>
- *
- * @return the polynomial
- */
- private static PolynomialFunction dTesseral() {
- // Collins 4-236, Danielson 2.7.3-(9)
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, 1.0
- });
- }
- /**
- * Compute polynomial coefficient f.
- *
- * <p>
- * It is used to generate the coefficient for K<sub>j</sub><sup>-n+1, s</sup> / dχ when computing dK<sub>j</sub><sup>-n-1, s</sup> / de²
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(9) and Collins 4-236 and 4-240
- * </p>
- *
- * @param j the j coefficient
- * @param s the s coefficient
- * @param n index
- * @return the polynomial
- */
- private static PolynomialFunction fTesseral(final int j, final int s, final int n) {
- // Collins 4-236, Danielson 2.7.3-(9)
- final double r1 = (n + 3.0) * j * s;
- final double r2 = (n + 4.0) * (2.0 + n + s) * (2.0 + n - s);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, 0.0, r1 / r2
- });
- }
- /**
- * Generate the polynomials needed in the linear transformation.
- *
- * @param n0 the index of the initial condition, Petre's paper
- * @param nMin rhe minimum value for the order
- * @param offset offset used to identify the polynomial that corresponds
- * to a negative value of n in the internal array that
- * starts at 0
- * @param slice number of coefficients that will be computed with a set
- * of roots
- * @param j the j coefficient
- * @param s the s coefficient
- * @param mpvec array to store the first vector of polynomials
- * associated to Hansen coefficients and derivatives.
- * @param mpvecDeriv array to store the second vector of polynomials
- * associated only to derivatives.
- */
- public static void generateTesseralPolynomials(final int n0, final int nMin,
- final int offset, final int slice,
- final int j, final int s,
- final PolynomialFunction[][] mpvec,
- final PolynomialFunction[][] mpvecDeriv) {
- // Initialization of the matrices for linear transformations
- // The final configuration of these matrices are obtained by composition
- // of linear transformations
- // The matrix of polynomials associated to Hansen coefficients, Petre's
- // paper
- PolynomialFunctionMatrix A = HansenUtilities.buildIdentityMatrix4();
- // The matrix of polynomials associated to derivatives, Petre's paper
- final PolynomialFunctionMatrix B = HansenUtilities.buildZeroMatrix4();
- PolynomialFunctionMatrix D = HansenUtilities.buildZeroMatrix4();
- final PolynomialFunctionMatrix a = HansenUtilities.buildZeroMatrix4();
- // The matrix of the current linear transformation
- a.setMatrixLine(0, new PolynomialFunction[] {
- HansenUtilities.ZERO, HansenUtilities.ONE, HansenUtilities.ZERO, HansenUtilities.ZERO
- });
- a.setMatrixLine(1, new PolynomialFunction[] {
- HansenUtilities.ZERO, HansenUtilities.ZERO, HansenUtilities.ONE, HansenUtilities.ZERO
- });
- a.setMatrixLine(2, new PolynomialFunction[] {
- HansenUtilities.ZERO, HansenUtilities.ZERO, HansenUtilities.ZERO, HansenUtilities.ONE
- });
- // The generation process
- int index;
- int sliceCounter = 0;
- for (int i = n0 - 1; i > nMin - 1; i--) {
- index = i + offset;
- // The matrix of the current linear transformation is updated
- // Petre's paper
- a.setMatrixLine(3, new PolynomialFunction[] {
- cTesseral(j, s, i), HansenUtilities.ZERO, bTesseral(j, s, i), aTesseral(s, i)
- });
- // composition of the linear transformations to calculate
- // the polynomials associated to Hansen coefficients
- // Petre's paper
- A = A.multiply(a);
- // store the polynomials for Hansen coefficients
- mpvec[index] = A.getMatrixLine(3);
- // composition of the linear transformations to calculate
- // the polynomials associated to derivatives
- // Petre's paper
- D = D.multiply(a);
- //Update the B matrix
- B.setMatrixLine(3, new PolynomialFunction[] {
- HansenUtilities.ZERO, fTesseral(j, s, i),
- HansenUtilities.ZERO, dTesseral()
- });
- D = D.add(A.multiply(B));
- // store the polynomials for Hansen coefficients from the
- // expressions of derivatives
- mpvecDeriv[index] = D.getMatrixLine(3);
- if (++sliceCounter % slice == 0) {
- // Re-Initialisation of matrix for linear transformmations
- // The final configuration of these matrix are obtained by composition
- // of linear transformations
- A = HansenUtilities.buildIdentityMatrix4();
- D = HansenUtilities.buildZeroMatrix4();
- }
- }
- }
- /**
- * Compute polynomial coefficient a.
- *
- * <p>
- * It is used to generate the coefficient for K₀<sup>n-1, s</sup> when computing K₀<sup>n, s</sup>
- * and the coefficient for dK₀<sup>n-1, s</sup> / dΧ when computing dK₀<sup>n, s</sup> / dΧ
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(7c) and Collins 4-254 and 4-257
- * </p>
- *
- * @param n n value
- * @return the polynomial
- */
- private static PolynomialFunction aThirdBody(final int n) {
- // from recurrence Danielson 2.7.3-(7c), Collins 4-254
- final double r1 = 2 * n + 1;
- final double r2 = n + 1;
- return new PolynomialFunction(new double[] {
- r1 / r2
- });
- }
- /**
- * Compute polynomial coefficient b.
- *
- * <p>
- * It is used to generate the coefficient for K₀<sup>n-2, s</sup> when computing K₀<sup>n, s</sup>
- * and the coefficient for dK₀<sup>n-2, s</sup> / dΧ when computing dK₀<sup>n, s</sup> / dΧ
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(7c) and Collins 4-254 and 4-257
- * </p>
- *
- * @param s the s coefficient
- * @param n n value
- * @return the polynomial
- */
- private static PolynomialFunction bThirdBody(final int s, final int n) {
- // from recurrence Danielson 2.7.3-(7c), Collins 4-254
- final double r1 = (n + s) * (n - s);
- final double r2 = n * (n + 1);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, -r1 / r2
- });
- }
- /**
- * Compute polynomial coefficient d.
- *
- * <p>
- * It is used to generate the coefficient for K₀<sup>n-2, s</sup> when computing dK₀<sup>n, s</sup> / dΧ
- * </p>
- *
- * <p>
- * See Danielson 2.7.3-(7c) and Collins 4-254 and 4-257
- * </p>
- *
- * @param s the s coefficient
- * @param n n value
- * @return the polynomial
- */
- private static PolynomialFunction dThirdBody(final int s, final int n) {
- // from Danielson 3.2-(3b)
- final double r1 = 2 * (n + s) * (n - s);
- final double r2 = n * (n + 1);
- return new PolynomialFunction(new double[] {
- 0.0, 0.0, 0.0, r1 / r2
- });
- }
- /**
- * Generate the polynomials needed in the linear transformation.
- *
- * @param n0 the index of the initial condition, Petre's paper
- * @param nMax the maximum order of n indexes
- * @param slice number of coefficients that will be computed with a set of roots
- * @param s the s coefficient
- * @param mpvec array to store the first vector of polynomials
- * associated to Hansen coefficients and derivatives.
- * @param mpvecDeriv array to store the second vector of polynomials
- * associated only to derivatives.
- * <p>
- * See Petre's paper
- * </p>
- */
- public static void generateThirdBodyPolynomials(final int n0, final int nMax,
- final int slice,
- final int s,
- final PolynomialFunction[][] mpvec,
- final PolynomialFunction[][] mpvecDeriv) {
- int sliceCounter = 0;
- // Initialization of the matrices for linear transformations
- // The final configuration of these matrices are obtained by composition
- // of linear transformations
- // the matrix A for the polynomials associated
- // to Hansen coefficients, Petre's pater
- PolynomialFunctionMatrix A = HansenUtilities.buildIdentityMatrix2();
- // the matrix D for the polynomials associated
- // to derivatives, Petre's paper
- final PolynomialFunctionMatrix B = HansenUtilities.buildZeroMatrix2();
- PolynomialFunctionMatrix D = HansenUtilities.buildZeroMatrix2();
- PolynomialFunctionMatrix E = HansenUtilities.buildIdentityMatrix2();
- // The matrix that contains the coefficients at each step
- final PolynomialFunctionMatrix a = HansenUtilities.buildZeroMatrix2();
- a.setElem(0, 1, HansenUtilities.ONE);
- // The generation process
- for (int i = n0 + 2; i <= nMax; i++) {
- // Collins 4-254 or Danielson 2.7.3-(7)
- // Petre's paper
- // The matrix of the current linear transformation is actualized
- a.setMatrixLine(1, new PolynomialFunction[] {
- bThirdBody(s, i), aThirdBody(i)
- });
- // composition of the linear transformations to calculate
- // the polynomials associated to Hansen coefficients
- A = A.multiply(a);
- // store the polynomials associated to Hansen coefficients
- mpvec[i] = A.getMatrixLine(1);
- // composition of the linear transformations to calculate
- // the polynomials associated to derivatives
- // Danielson 3.2-(3b) and Petre's paper
- D = D.multiply(a);
- if (sliceCounter % slice != 0) {
- a.setMatrixLine(1, new PolynomialFunction[] {
- bThirdBody(s, i - 1), aThirdBody(i - 1)
- });
- E = E.multiply(a);
- }
- B.setElem(1, 0, dThirdBody(s, i));
- // F = E.prod(B);
- D = D.add(E.multiply(B));
- // store the polynomials associated to the derivatives
- mpvecDeriv[i] = D.getMatrixLine(1);
- if (++sliceCounter % slice == 0) {
- // Re-Initialization of the matrices for linear transformations
- // The final configuration of these matrices are obtained by composition
- // of linear transformations
- A = HansenUtilities.buildIdentityMatrix2();
- D = HansenUtilities.buildZeroMatrix2();
- E = HansenUtilities.buildIdentityMatrix2();
- }
- }
- }
- }