FieldNumericalPropagator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.ode.FieldODEIntegrator;
- import org.hipparchus.util.MathArrays;
- import org.orekit.annotation.DefaultDataContext;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.attitudes.AttitudeProviderModifier;
- import org.orekit.attitudes.FieldAttitude;
- import org.orekit.data.DataContext;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitIllegalArgumentException;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.forces.ForceModel;
- import org.orekit.forces.gravity.NewtonianAttraction;
- import org.orekit.frames.Frame;
- import org.orekit.orbits.FieldOrbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngleType;
- import org.orekit.propagation.CartesianToleranceProvider;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.PropagationType;
- import org.orekit.propagation.Propagator;
- import org.orekit.propagation.ToleranceProvider;
- import org.orekit.propagation.events.FieldEventDetector;
- import org.orekit.propagation.integration.FieldAbstractIntegratedPropagator;
- import org.orekit.propagation.integration.FieldStateMapper;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldAbsolutePVCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterObserver;
- import org.orekit.utils.TimeSpanMap;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- /** This class propagates {@link org.orekit.orbits.FieldOrbit orbits} using
- * numerical integration.
- * <p>Numerical propagation is much more accurate than analytical propagation
- * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
- * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
- * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
- * Whereas analytical propagators are configured only thanks to their various
- * constructors and can be used immediately after construction, numerical propagators
- * configuration involve setting several parameters between construction time
- * and propagation time.</p>
- * <p>The configuration parameters that can be set are:</p>
- * <ul>
- * <li>the initial spacecraft state ({@link #setInitialState(FieldSpacecraftState)})</li>
- * <li>the central attraction coefficient ({@link #setMu(CalculusFieldElement)})</li>
- * <li>the various force models ({@link #addForceModel(ForceModel)},
- * {@link #removeForceModels()})</li>
- * <li>the {@link OrbitType type} of orbital parameters to be used for propagation
- * ({@link #setOrbitType(OrbitType)}),
- * <li>the {@link PositionAngleType type} of position angle to be used in orbital parameters
- * to be used for propagation where it is relevant ({@link
- * #setPositionAngleType(PositionAngleType)}),
- * <li>whether {@link org.orekit.propagation.integration.FieldAdditionalDerivativesProvider additional derivatives providers}
- * should be propagated along with orbital state
- * ({@link #addAdditionalDerivativesProvider(org.orekit.propagation.integration.FieldAdditionalDerivativesProvider)}),
- * <li>the discrete events that should be triggered during propagation
- * ({@link #addEventDetector(FieldEventDetector)},
- * {@link #clearEventsDetectors()})</li>
- * <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
- * </ul>
- * <p>From these configuration parameters, only the initial state is mandatory. The default
- * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
- * {@link PositionAngleType#ECCENTRIC} longitude argument. If the central attraction coefficient
- * is not explicitly specified, the one used to define the initial orbit will be used.
- * However, specifying only the initial state and perhaps the central attraction coefficient
- * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
- * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
- * perhaps be more effective.</p>
- * <p>The underlying numerical integrator set up in the constructor may also have its own
- * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
- * are the min, max and perhaps start step size as well as the absolute and/or relative errors
- * thresholds.</p>
- * <p>The state that is seen by the integrator is a simple seven elements double array.
- * The six first elements are either:
- * <ul>
- * <li>the {@link org.orekit.orbits.FieldEquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
- * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
- * or λ<sub>v</sub>) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldKeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
- * M or E or v) in meters and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldCircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
- * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
- * and radians,</li>
- * <li>the {@link org.orekit.orbits.FieldCartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
- * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
- * </ul>
- * The last element is the mass in kilograms.
- * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
- * equinoctial parameters and true longitude argument:</p>
- * <pre>
- * final T zero = field.getZero();
- * final T dP = zero.add(0.001);
- * final T minStep = zero.add(0.001);
- * final T maxStep = zero.add(500);
- * final T initStep = zero.add(60);
- * final double[][] tolerance = ToleranceProvider.getDefaultToleranceProvider(dP).getTolerances(orbit, OrbitType.EQUINOCTIAL);
- * AdaptiveStepsizeFieldIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tolerance[0], tolerance[1]);
- * integrator.setInitialStepSize(initStep);
- * propagator = new FieldNumericalPropagator<>(field, integrator);
- * </pre>
- * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
- * thus allowing a new propagation to be started from there without recomputing the part already performed.
- * This behaviour can be changed by calling {@link #setResetAtEnd(boolean)}.
- * </p>
- * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
- * thread-safe.</p>
- * @see FieldSpacecraftState
- * @see ForceModel
- * @see org.orekit.propagation.sampling.FieldOrekitStepHandler
- * @see org.orekit.propagation.sampling.FieldOrekitFixedStepHandler
- * @see org.orekit.propagation.integration.FieldIntegratedEphemeris
- * @see FieldTimeDerivativesEquations
- *
- * @author Mathieu Roméro
- * @author Luc Maisonobe
- * @author Guylaine Prat
- * @author Fabien Maussion
- * @author Véronique Pommier-Maurussane
- * @param <T> type of the field elements
- */
- public class FieldNumericalPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractIntegratedPropagator<T> {
- /** Force models used during the extrapolation of the FieldOrbit<T>, without Jacobians. */
- private final List<ForceModel> forceModels;
- /** Field used by this class.*/
- private final Field<T> field;
- /** boolean to ignore or not the creation of a NewtonianAttraction. */
- private boolean ignoreCentralAttraction = false;
- /**
- * boolean to know if a full attitude (with rates) is needed when computing derivatives for the ODE.
- */
- private boolean needFullAttitudeForDerivatives = true;
- /** Create a new instance of NumericalPropagator, based on orbit definition mu.
- * After creation, the instance is empty, i.e. the attitude provider is set to an
- * unspecified default law and there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel} is not
- * called after creation, the integrated orbit will follow a Keplerian
- * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
- * for {@link #setOrbitType(OrbitType) propagation
- * orbit type} and {@link PositionAngleType#ECCENTRIC} for {@link
- * #setPositionAngleType(PositionAngleType) position angle type}.
- *
- * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
- *
- * @param integrator numerical integrator to use for propagation.
- * @param field Field used by default
- * @see #FieldNumericalPropagator(Field, FieldODEIntegrator, AttitudeProvider)
- */
- @DefaultDataContext
- public FieldNumericalPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator) {
- this(field, integrator, Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
- }
- /** Create a new instance of NumericalPropagator, based on orbit definition mu.
- * After creation, the instance is empty, i.e. the attitude provider is set to an
- * unspecified default law and there are no perturbing forces at all.
- * This means that if {@link #addForceModel addForceModel} is not
- * called after creation, the integrated orbit will follow a Keplerian
- * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
- * for {@link #setOrbitType(OrbitType) propagation
- * orbit type} and {@link PositionAngleType#ECCENTRIC} for {@link
- * #setPositionAngleType(PositionAngleType) position angle type}.
- * @param field Field used by default
- * @param integrator numerical integrator to use for propagation.
- * @param attitudeProvider attitude law to use.
- * @since 10.1
- */
- public FieldNumericalPropagator(final Field<T> field,
- final FieldODEIntegrator<T> integrator,
- final AttitudeProvider attitudeProvider) {
- super(field, integrator, PropagationType.OSCULATING);
- this.field = field;
- forceModels = new ArrayList<>();
- initMapper(field);
- setAttitudeProvider(attitudeProvider);
- setMu(field.getZero().add(Double.NaN));
- clearStepHandlers();
- setOrbitType(NumericalPropagator.DEFAULT_ORBIT_TYPE);
- setPositionAngleType(NumericalPropagator.DEFAULT_POSITION_ANGLE_TYPE);
- }
- /** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
- * @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
- * added automatically if missing
- */
- public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
- this.ignoreCentralAttraction = ignoreCentralAttraction;
- }
- /** Set the central attraction coefficient μ.
- * <p>
- * Setting the central attraction coefficient is
- * equivalent to {@link #addForceModel(ForceModel) add}
- * a {@link NewtonianAttraction} force model.
- * </p>
- * @param mu central attraction coefficient (m³/s²)
- * @see #addForceModel(ForceModel)
- * @see #getAllForceModels()
- */
- @Override
- public void setMu(final T mu) {
- if (ignoreCentralAttraction) {
- superSetMu(mu);
- } else {
- addForceModel(new NewtonianAttraction(mu.getReal()));
- }
- }
- /** Set the central attraction coefficient μ only in upper class.
- * @param mu central attraction coefficient (m³/s²)
- */
- private void superSetMu(final T mu) {
- super.setMu(mu);
- }
- /** Check if Newtonian attraction force model is available.
- * <p>
- * Newtonian attraction is always the last force model in the list.
- * </p>
- * @return true if Newtonian attraction force model is available
- */
- private boolean hasNewtonianAttraction() {
- final int last = forceModels.size() - 1;
- return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
- }
- /** Add a force model to the global perturbation model.
- * <p>If this method is not called at all, the integrated orbit will follow
- * a Keplerian evolution only.</p>
- * @param model perturbing {@link ForceModel} to add
- * @see #removeForceModels()
- * @see #setMu(CalculusFieldElement)
- */
- public void addForceModel(final ForceModel model) {
- if (model instanceof NewtonianAttraction) {
- // we want to add the central attraction force model
- try {
- // ensure we are notified of any mu change
- model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
- /** {@inheritDoc} */
- @Override
- public void valueChanged(final double previousValue, final ParameterDriver driver, final AbsoluteDate date) {
- // mu PDriver should have only 1 span
- superSetMu(field.getZero().newInstance(driver.getValue(date)));
- }
- /** {@inheritDoc} */
- @Override
- public void valueSpanMapChanged(final TimeSpanMap<Double> previousValue, final ParameterDriver driver) {
- // mu PDriver should have only 1 span
- superSetMu(field.getZero().newInstance(driver.getValue()));
- }
- });
- } catch (OrekitException oe) {
- // this should never happen
- throw new OrekitInternalError(oe);
- }
- if (hasNewtonianAttraction()) {
- // there is already a central attraction model, replace it
- forceModels.set(forceModels.size() - 1, model);
- } else {
- // there are no central attraction model yet, add it at the end of the list
- forceModels.add(model);
- }
- } else {
- // we want to add a perturbing force model
- if (hasNewtonianAttraction()) {
- // insert the new force model before Newtonian attraction,
- // which should always be the last one in the list
- forceModels.add(forceModels.size() - 1, model);
- } else {
- // we only have perturbing force models up to now, just append at the end of the list
- forceModels.add(model);
- }
- }
- }
- /** Remove all perturbing force models from the global perturbation model.
- * <p>Once all perturbing forces have been removed (and as long as no new force
- * model is added), the integrated orbit will follow a Keplerian evolution
- * only.</p>
- * @see #addForceModel(ForceModel)
- */
- public void removeForceModels() {
- forceModels.clear();
- }
- /** Get all the force models, perturbing forces and Newtonian attraction included.
- * @return list of perturbing force models, with Newtonian attraction being the
- * last one
- * @see #addForceModel(ForceModel)
- * @see #setMu(CalculusFieldElement)
- * @since 9.1
- */
- public List<ForceModel> getAllForceModels() {
- return Collections.unmodifiableList(forceModels);
- }
- /** Set propagation orbit type.
- * @param orbitType orbit type to use for propagation
- */
- @Override
- public void setOrbitType(final OrbitType orbitType) {
- super.setOrbitType(orbitType);
- }
- /** Get propagation parameter type.
- * @return orbit type used for propagation
- */
- @Override
- public OrbitType getOrbitType() {
- return superGetOrbitType();
- }
- /** Get propagation parameter type.
- * @return orbit type used for propagation
- */
- private OrbitType superGetOrbitType() {
- return super.getOrbitType();
- }
- /** Set position angle type.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param positionAngleType angle type to use for propagation
- */
- @Override
- public void setPositionAngleType(final PositionAngleType positionAngleType) {
- super.setPositionAngleType(positionAngleType);
- }
- /** Get propagation parameter type.
- * @return angle type to use for propagation
- */
- @Override
- public PositionAngleType getPositionAngleType() {
- return super.getPositionAngleType();
- }
- /** Set the initial state.
- * @param initialState initial state
- */
- public void setInitialState(final FieldSpacecraftState<T> initialState) {
- resetInitialState(initialState);
- }
- /** {@inheritDoc} */
- @Override
- public void resetInitialState(final FieldSpacecraftState<T> state) {
- super.resetInitialState(state);
- if (!hasNewtonianAttraction()) {
- setMu(state.getOrbit().getMu());
- }
- setStartDate(state.getDate());
- }
- /** {@inheritDoc} */
- @Override
- protected AttitudeProvider initializeAttitudeProviderForDerivatives() {
- final AttitudeProvider attitudeProvider = getAttitudeProvider();
- return needFullAttitudeForDerivatives ? attitudeProvider :
- AttitudeProviderModifier.getFrozenAttitudeProvider(attitudeProvider);
- }
- /** {@inheritDoc} */
- protected FieldStateMapper<T> createMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
- final OrbitType orbitType, final PositionAngleType positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- return new FieldOsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** Internal mapper using directly osculating parameters. */
- private class FieldOsculatingMapper extends FieldStateMapper<T> {
- /** Simple constructor.
- * <p>
- * The position parameter type is meaningful only if {@link
- * #getOrbitType() propagation orbit type}
- * support it. As an example, it is not meaningful for propagation
- * in {@link OrbitType#CARTESIAN Cartesian} parameters.
- * </p>
- * @param referenceDate reference date
- * @param mu central attraction coefficient (m³/s²)
- * @param orbitType orbit type to use for mapping
- * @param positionAngleType angle type to use for propagation
- * @param attitudeProvider attitude provider
- * @param frame inertial frame
- */
- FieldOsculatingMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
- final OrbitType orbitType, final PositionAngleType positionAngleType,
- final AttitudeProvider attitudeProvider, final Frame frame) {
- super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
- }
- /** {@inheritDoc} */
- public FieldSpacecraftState<T> mapArrayToState(final FieldAbsoluteDate<T> date, final T[] y, final T[] yDot,
- final PropagationType type) {
- // the parameter type is ignored for the Numerical Propagator
- final T mass = y[6];
- if (mass.getReal() <= 0.0) {
- throw new OrekitException(OrekitMessages.NOT_POSITIVE_SPACECRAFT_MASS, mass);
- }
- if (superGetOrbitType() == null) {
- // propagation uses absolute position-velocity-acceleration
- final FieldVector3D<T> p = new FieldVector3D<>(y[0], y[1], y[2]);
- final FieldVector3D<T> v = new FieldVector3D<>(y[3], y[4], y[5]);
- final FieldVector3D<T> a;
- final FieldAbsolutePVCoordinates<T> absPva;
- if (yDot == null) {
- absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, FieldVector3D.getZero(date.getField())));
- } else {
- a = new FieldVector3D<>(yDot[3], yDot[4], yDot[5]);
- absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, a));
- }
- final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
- return new FieldSpacecraftState<>(absPva, attitude).withMass(mass);
- } else {
- // propagation uses regular orbits
- final FieldOrbit<T> orbit = superGetOrbitType().mapArrayToOrbit(y, yDot, super.getPositionAngleType(), date, getMu(), getFrame());
- final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
- return new FieldSpacecraftState<>(orbit, attitude).withMass(mass);
- }
- }
- /** {@inheritDoc} */
- public void mapStateToArray(final FieldSpacecraftState<T> state, final T[] y, final T[] yDot) {
- if (superGetOrbitType() == null) {
- // propagation uses absolute position-velocity-acceleration
- final FieldVector3D<T> p = state.getAbsPVA().getPosition();
- final FieldVector3D<T> v = state.getAbsPVA().getVelocity();
- y[0] = p.getX();
- y[1] = p.getY();
- y[2] = p.getZ();
- y[3] = v.getX();
- y[4] = v.getY();
- y[5] = v.getZ();
- y[6] = state.getMass();
- }
- else {
- superGetOrbitType().mapOrbitToArray(state.getOrbit(), super.getPositionAngleType(), y, yDot);
- y[6] = state.getMass();
- }
- }
- }
- /** {@inheritDoc} */
- protected MainStateEquations<T> getMainStateEquations(final FieldODEIntegrator<T> integrator) {
- return new Main(integrator);
- }
- /** Internal class for osculating parameters integration. */
- private class Main implements MainStateEquations<T>, FieldTimeDerivativesEquations<T> {
- /** Derivatives array. */
- private final T[] yDot;
- /** Current state. */
- private FieldSpacecraftState<T> currentState;
- /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
- private T[][] jacobian;
- /** Flag keeping track whether Jacobian matrix needs to be recomputed or not. */
- private boolean recomputingJacobian;
- /** Simple constructor.
- * @param integrator numerical integrator to use for propagation.
- */
- Main(final FieldODEIntegrator<T> integrator) {
- this.yDot = MathArrays.buildArray(getField(), 7);
- this.jacobian = MathArrays.buildArray(getField(), 6, 6);
- this.recomputingJacobian = true;
- // feed internal event detectors
- for (final ForceModel forceModel : forceModels) {
- forceModel.getFieldEventDetectors(getField()).forEach(detector -> setUpEventDetector(integrator, detector));
- }
- getAttitudeProvider().getFieldEventDetectors(getField()).forEach(detector -> setUpEventDetector(integrator, detector));
- // default value for Jacobian is identity
- for (int i = 0; i < jacobian.length; ++i) {
- Arrays.fill(jacobian[i], getField().getZero());
- jacobian[i][i] = getField().getOne();
- }
- }
- /** {@inheritDoc} */
- @Override
- public void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target) {
- needFullAttitudeForDerivatives = forceModels.stream().anyMatch(ForceModel::dependsOnAttitudeRate);
- forceModels.forEach(fm -> fm.init(initialState, target));
- final int numberOfForces = forceModels.size();
- final OrbitType orbitType = superGetOrbitType();
- if (orbitType != null && orbitType != OrbitType.CARTESIAN && numberOfForces > 0) {
- if (numberOfForces > 1) {
- recomputingJacobian = true;
- } else {
- recomputingJacobian = !(forceModels.get(0) instanceof NewtonianAttraction);
- }
- } else {
- recomputingJacobian = false;
- }
- }
- /** {@inheritDoc} */
- @Override
- public T[] computeDerivatives(final FieldSpacecraftState<T> state) {
- final T zero = state.getMass().getField().getZero();
- currentState = state;
- Arrays.fill(yDot, zero);
- if (recomputingJacobian) {
- // propagation uses Jacobian matrix of orbital parameters w.r.t. Cartesian ones
- currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
- }
- // compute the contributions of all perturbing forces,
- // using the Kepler contribution at the end since
- // NewtonianAttraction is always the last instance in the list
- for (final ForceModel forceModel : forceModels) {
- forceModel.addContribution(state, this);
- }
- if (superGetOrbitType() == null) {
- // position derivative is velocity, and was not added above in the force models
- // (it is added when orbit type is non-null because NewtonianAttraction considers it)
- final FieldVector3D<T> velocity = currentState.getPVCoordinates().getVelocity();
- yDot[0] = yDot[0].add(velocity.getX());
- yDot[1] = yDot[1].add(velocity.getY());
- yDot[2] = yDot[2].add(velocity.getZ());
- }
- return yDot.clone();
- }
- /** {@inheritDoc} */
- @Override
- public void addKeplerContribution(final T mu) {
- if (superGetOrbitType() == null) {
- // if mu is neither 0 nor NaN, we want to include Newtonian acceleration
- if (mu.getReal() > 0) {
- // velocity derivative is Newtonian acceleration
- final FieldVector3D<T> position = currentState.getPosition();
- final T r2 = position.getNormSq();
- final T coeff = r2.multiply(r2.sqrt()).reciprocal().negate().multiply(mu);
- yDot[3] = yDot[3].add(coeff.multiply(position.getX()));
- yDot[4] = yDot[4].add(coeff.multiply(position.getY()));
- yDot[5] = yDot[5].add(coeff.multiply(position.getZ()));
- }
- } else {
- // propagation uses regular orbits
- currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
- }
- }
- /** {@inheritDoc} */
- @Override
- public void addNonKeplerianAcceleration(final FieldVector3D<T> gamma) {
- for (int i = 0; i < 6; ++i) {
- final T[] jRow = jacobian[i];
- yDot[i] = yDot[i].add(jRow[3].linearCombination(jRow[3], gamma.getX(),
- jRow[4], gamma.getY(),
- jRow[5], gamma.getZ()));
- }
- }
- /** {@inheritDoc} */
- @Override
- public void addMassDerivative(final T q) {
- if (q.getReal() > 0) {
- throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
- }
- yDot[6] = yDot[6].add(q);
- }
- }
- /** Estimate tolerance vectors for integrators.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from a scalar position error specified by the user.
- * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
- * we get at constant energy (i.e. on a Keplerian trajectory):
- * <pre>
- * V r² |dV| = mu |dr|
- * </pre>
- * So we deduce a scalar velocity error consistent with the position error.
- * From here, we apply orbits Jacobians matrices to get consistent errors
- * on orbital parameters.
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
- * are only local estimates, not global ones. So some care must be taken when using
- * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
- * will guarantee a 1mm error position after several orbits integration.
- * </p>
- * @param dP user specified position error
- * @param orbit reference orbit
- * @param type propagation type for the meaning of the tolerance vectors elements
- * (it may be different from {@code orbit.getType()})
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @param <T> elements type
- * @deprecated since 13.0. Use {@link ToleranceProvider} for default and custom tolerances.
- */
- @Deprecated
- public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final FieldOrbit<T> orbit,
- final OrbitType type) {
- return ToleranceProvider.getDefaultToleranceProvider(dP.getReal()).getTolerances(orbit, type, PositionAngleType.TRUE);
- }
- /** Estimate tolerance vectors for integrators when propagating in orbits.
- * <p>
- * The errors are estimated from partial derivatives properties of orbits,
- * starting from scalar position and velocity errors specified by the user.
- * <p>
- * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
- * are only local estimates, not global ones. So some care must be taken when using
- * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
- * will guarantee a 1mm error position after several orbits integration.
- * </p>
- * @param <T> elements type
- * @param dP user specified position error
- * @param dV user specified velocity error
- * @param orbit reference orbit
- * @param type propagation type for the meaning of the tolerance vectors elements
- * (it may be different from {@code orbit.getType()})
- * @return a two rows array, row 0 being the absolute tolerance error and row 1
- * being the relative tolerance error
- * @since 10.3
- * @deprecated since 13.0. Use {@link ToleranceProvider} for default and custom tolerances.
- */
- @Deprecated
- public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final T dV,
- final FieldOrbit<T> orbit,
- final OrbitType type) {
- return ToleranceProvider.of(CartesianToleranceProvider.of(dP.getReal(), dV.getReal(),
- CartesianToleranceProvider.DEFAULT_ABSOLUTE_MASS_TOLERANCE)).getTolerances(orbit, type, PositionAngleType.TRUE);
- }
- }