CR3BPForceModel.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.numerical.cr3bp;

  18. import java.util.Collections;
  19. import java.util.List;

  20. import org.hipparchus.CalculusFieldElement;
  21. import org.hipparchus.analysis.differentiation.DSFactory;
  22. import org.hipparchus.analysis.differentiation.DerivativeStructure;
  23. import org.hipparchus.analysis.differentiation.FDSFactory;
  24. import org.hipparchus.analysis.differentiation.FieldDerivativeStructure;
  25. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  26. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  27. import org.hipparchus.util.FastMath;
  28. import org.orekit.bodies.CR3BPSystem;
  29. import org.orekit.forces.ForceModel;
  30. import org.orekit.propagation.FieldSpacecraftState;
  31. import org.orekit.propagation.SpacecraftState;
  32. import org.orekit.utils.ParameterDriver;

  33. /** Class calculating the acceleration induced by CR3BP model.
  34.  * @see "Dynamical systems, the three-body problem, and space mission design, Koon, Lo, Marsden, Ross"
  35.  * @author Vincent Mouraux
  36.  * @since 10.2
  37.  */
  38. public class CR3BPForceModel implements ForceModel {

  39.     /** Suffix for parameter name for Mass Ratio enabling Jacobian processing. */
  40.     public static final String MASS_RATIO_SUFFIX =  "CR3BP System Mass Ratio";

  41.     /**
  42.      * Central attraction scaling factor.
  43.      * <p>
  44.      * We use a power of 2 to avoid numeric noise introduction in the
  45.      * multiplications/divisions sequences.
  46.      * </p>
  47.      */
  48.     private static final double MU_SCALE = FastMath.scalb(1.0, 32);

  49.     /** Driver for gravitational parameter. */
  50.     private final ParameterDriver muParameterDriver;

  51.     /** Simple constructor.
  52.      * @param cr3bp Name of the CR3BP System
  53.      */
  54.     public CR3BPForceModel(final CR3BPSystem cr3bp) {
  55.         muParameterDriver = new ParameterDriver(cr3bp.getName() + MASS_RATIO_SUFFIX,
  56.                                                 cr3bp.getMassRatio(), MU_SCALE, 0.0,
  57.                                                 Double.POSITIVE_INFINITY);
  58.     }

  59.     /** {@inheritDoc} */
  60.     public Vector3D acceleration(final SpacecraftState s,
  61.                                  final double[] parameters) {

  62.         // Spacecraft Velocity
  63.         final double vx = s.getPVCoordinates().getVelocity().getX();
  64.         final double vy = s.getPVCoordinates().getVelocity().getY();

  65.         // Spacecraft Potential
  66.         final DerivativeStructure potential = getPotential(s);

  67.         // Potential derivatives
  68.         final double[] dU = potential.getAllDerivatives();

  69.         // first order derivatives index
  70.         final int idX = potential.getFactory().getCompiler().getPartialDerivativeIndex(1, 0, 0);
  71.         final int idY = potential.getFactory().getCompiler().getPartialDerivativeIndex(0, 1, 0);
  72.         final int idZ = potential.getFactory().getCompiler().getPartialDerivativeIndex(0, 0, 1);

  73.         // Acceleration calculation according to CR3BP Analytical Model
  74.         final double accx = dU[idX] + 2.0 * vy;
  75.         final double accy = dU[idY] - 2.0 * vx;
  76.         final double accz = dU[idZ];

  77.         // compute absolute acceleration
  78.         return new Vector3D(accx, accy, accz);

  79.     }

  80.     /** {@inheritDoc} */
  81.     public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
  82.                                                                          final T[] parameters) {

  83.         // Spacecraft Velocity
  84.         final T vx = s.getPVCoordinates().getVelocity().getX();
  85.         final T vy = s.getPVCoordinates().getVelocity().getY();

  86.         // Spacecraft Potential
  87.         final FieldDerivativeStructure<T> fieldPotential = getPotential(s);
  88.         // Potential derivatives
  89.         final T[] dU = fieldPotential.getAllDerivatives();

  90.         // first order derivatives index
  91.         final int idX = fieldPotential.getFactory().getCompiler().getPartialDerivativeIndex(1, 0, 0);
  92.         final int idY = fieldPotential.getFactory().getCompiler().getPartialDerivativeIndex(0, 1, 0);
  93.         final int idZ = fieldPotential.getFactory().getCompiler().getPartialDerivativeIndex(0, 0, 1);

  94.         // Acceleration calculation according to CR3BP Analytical Model
  95.         final T accx = dU[idX].add(vy.multiply(2.0));
  96.         final T accy = dU[idY].subtract(vx.multiply(2.0));
  97.         final T accz = dU[idZ];

  98.         // compute absolute acceleration
  99.         return new FieldVector3D<>(accx, accy, accz);

  100.     }

  101.     /**
  102.      * Calculate spacecraft potential.
  103.      * @param s SpacecraftState
  104.      * @return Spacecraft Potential
  105.      */
  106.     public DerivativeStructure getPotential(final SpacecraftState s) {

  107.         // Spacecraft Position
  108.         final double x = s.getPosition().getX();
  109.         final double y = s.getPosition().getY();
  110.         final double z = s.getPosition().getZ();

  111.         final DSFactory factoryP = new DSFactory(3, 2);
  112.         final DerivativeStructure fpx = factoryP.variable(0, x);
  113.         final DerivativeStructure fpy = factoryP.variable(1, y);
  114.         final DerivativeStructure fpz = factoryP.variable(2, z);

  115.         final DerivativeStructure zero = fpx.getField().getZero();

  116.         // Get CR3BP System mass ratio
  117.         // By construction, mudriver has 1 value for the all time period that is why
  118.         // the getValue can be called with any date argument or null argument
  119.         final DerivativeStructure mu = zero.newInstance(muParameterDriver.getValue(s.getDate()));

  120.         // Normalized distances between primaries and barycenter in CR3BP
  121.         final DerivativeStructure d1 = mu;
  122.         final DerivativeStructure d2 = mu.negate().add(1.0);

  123.         // Norm of the Spacecraft position relative to the primary body
  124.         final DerivativeStructure r1 =
  125.             FastMath.sqrt((fpx.add(d1)).multiply(fpx.add(d1)).add(fpy.square())
  126.                 .add(fpz.square()));

  127.         // Norm of the Spacecraft position relative to the secondary body
  128.         final DerivativeStructure r2 =
  129.             FastMath.sqrt((fpx.subtract(d2)).multiply(fpx.subtract(d2))
  130.                 .add(fpy.square()).add(fpz.square()));

  131.         // Potential of the Spacecraft
  132.         return (mu.negate().add(1.0).divide(r1)).add(mu.divide(r2))
  133.                 .add(fpx.square().add(fpy.square()).multiply(0.5)).add(d1.multiply(d2).multiply(0.5));
  134.     }

  135.     /**
  136.      * Calculate spacecraft potential.
  137.      * @param <T> Field element
  138.      * @param s SpacecraftState
  139.      * @return Spacecraft Potential
  140.      */
  141.     public <T extends CalculusFieldElement<T>> FieldDerivativeStructure<T> getPotential(final FieldSpacecraftState<T> s) {

  142.         // Spacecraft Position
  143.         final T x = s.getPosition().getX();
  144.         final T y = s.getPosition().getY();
  145.         final T z = s.getPosition().getZ();

  146.         final FDSFactory<T> factoryP = new FDSFactory<>(s.getDate().getField(), 3, 2);
  147.         final FieldDerivativeStructure<T> fpx = factoryP.variable(0, x);
  148.         final FieldDerivativeStructure<T> fpy = factoryP.variable(1, y);
  149.         final FieldDerivativeStructure<T> fpz = factoryP.variable(2, z);
  150.         final FieldDerivativeStructure<T> zero = fpx.getField().getZero();

  151.         // Get CR3BP System mass ratio
  152.         // By construction, mudriver has 1 value for the all time period that is why
  153.         // the getValue can be called with any date argument or null argument
  154.         final FieldDerivativeStructure<T> mu = zero.newInstance(muParameterDriver.getValue(s.getDate().toAbsoluteDate()));

  155.         // Normalized distances between primaries and barycenter in CR3BP
  156.         final FieldDerivativeStructure<T> d1 = mu;
  157.         final FieldDerivativeStructure<T> d2 = mu.negate().add(1.0);

  158.         // Norm of the Spacecraft position relative to the primary body
  159.         final FieldDerivativeStructure<T> r1 =
  160.             FastMath.sqrt((fpx.add(d1)).multiply(fpx.add(d1)).add(fpy.square())
  161.                 .add(fpz.square()));

  162.         // Norm of the Spacecraft position relative to the secondary body
  163.         final FieldDerivativeStructure<T> r2 =
  164.             FastMath.sqrt((fpx.subtract(d2)).multiply(fpx.subtract(d2))
  165.                 .add(fpy.square()).add(fpz.square()));

  166.         // Potential of the Spacecraft
  167.         return (mu.negate().add(1.0).divide(r1)).add(mu.divide(r2))
  168.                 .add(fpx.square().add(fpy.square()).multiply(0.5)).add(d1.multiply(d2).multiply(0.5));
  169.     }

  170.     /** {@inheritDoc} */
  171.     public List<ParameterDriver> getParametersDrivers() {
  172.         return Collections.singletonList(muParameterDriver);
  173.     }

  174.     /** {@inheritDoc} */
  175.     public boolean dependsOnPositionOnly() {
  176.         return true;
  177.     }
  178. }