FieldAbstractIntegratedPropagator.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.integration;

  18. import java.util.ArrayList;
  19. import java.util.Arrays;
  20. import java.util.Collection;
  21. import java.util.Collections;
  22. import java.util.HashMap;
  23. import java.util.LinkedList;
  24. import java.util.List;
  25. import java.util.Map;
  26. import java.util.Queue;

  27. import org.hipparchus.CalculusFieldElement;
  28. import org.hipparchus.Field;
  29. import org.hipparchus.analysis.solvers.FieldBracketingNthOrderBrentSolver;
  30. import org.hipparchus.exception.MathIllegalArgumentException;
  31. import org.hipparchus.exception.MathIllegalStateException;
  32. import org.hipparchus.ode.FieldDenseOutputModel;
  33. import org.hipparchus.ode.FieldExpandableODE;
  34. import org.hipparchus.ode.FieldODEIntegrator;
  35. import org.hipparchus.ode.FieldODEState;
  36. import org.hipparchus.ode.FieldODEStateAndDerivative;
  37. import org.hipparchus.ode.FieldOrdinaryDifferentialEquation;
  38. import org.hipparchus.ode.FieldSecondaryODE;
  39. import org.hipparchus.ode.events.Action;
  40. import org.hipparchus.ode.events.FieldAdaptableInterval;
  41. import org.hipparchus.ode.events.FieldODEEventDetector;
  42. import org.hipparchus.ode.events.FieldODEEventHandler;
  43. import org.hipparchus.ode.sampling.AbstractFieldODEStateInterpolator;
  44. import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
  45. import org.hipparchus.ode.sampling.FieldODEStepHandler;
  46. import org.hipparchus.util.MathArrays;
  47. import org.hipparchus.util.Precision;
  48. import org.orekit.attitudes.AttitudeProvider;
  49. import org.orekit.errors.OrekitException;
  50. import org.orekit.errors.OrekitInternalError;
  51. import org.orekit.errors.OrekitMessages;
  52. import org.orekit.frames.Frame;
  53. import org.orekit.orbits.OrbitType;
  54. import org.orekit.orbits.PositionAngleType;
  55. import org.orekit.propagation.FieldAbstractPropagator;
  56. import org.orekit.propagation.FieldAdditionalDataProvider;
  57. import org.orekit.propagation.FieldBoundedPropagator;
  58. import org.orekit.propagation.FieldEphemerisGenerator;
  59. import org.orekit.propagation.FieldSpacecraftState;
  60. import org.orekit.propagation.PropagationType;
  61. import org.orekit.propagation.events.FieldEventDetector;
  62. import org.orekit.propagation.events.handlers.FieldEventHandler;
  63. import org.orekit.propagation.sampling.FieldOrekitStepHandler;
  64. import org.orekit.propagation.sampling.FieldOrekitStepInterpolator;
  65. import org.orekit.time.FieldAbsoluteDate;
  66. import org.orekit.utils.FieldDataDictionary;


  67. /** Common handling of {@link org.orekit.propagation.FieldPropagator FieldPropagator}
  68.  *  methods for both numerical and semi-analytical propagators.
  69.  * @author Luc Maisonobe
  70.  * @param <T> type of the field element
  71.  */
  72. public abstract class FieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractPropagator<T> {

  73.     /** Internal name used for complete secondary state dimension.
  74.      * @since 11.1
  75.      */
  76.     private static final String SECONDARY_DIMENSION = "Orekit-secondary-dimension";

  77.     /** Event detectors not related to force models. */
  78.     private final List<FieldEventDetector<T>> detectors;

  79.     /** Step handlers dedicated to ephemeris generation. */
  80.     private final List<FieldStoringStepHandler> ephemerisGenerators;

  81.     /** Integrator selected by the user for the orbital extrapolation process. */
  82.     private final FieldODEIntegrator<T> integrator;

  83.     /** Offsets of secondary states managed by {@link FieldAdditionalDerivativesProvider}.
  84.      * @since 11.1
  85.      */
  86.     private final Map<String, Integer> secondaryOffsets;

  87.     /** Additional derivatives providers.
  88.      * @since 11.1
  89.      */
  90.     private final List<FieldAdditionalDerivativesProvider<T>> additionalDerivativesProviders;

  91.     /** Counter for differential equations calls. */
  92.     private int calls;

  93.     /** Mapper between raw double components and space flight dynamics objects. */
  94.     private FieldStateMapper<T> stateMapper;

  95.     /**
  96.      * Attitude provider when evaluating derivatives. Can be a frozen one for performance.
  97.      * @since 12.1
  98.      */
  99.     private AttitudeProvider attitudeProviderForDerivatives;

  100.     /** Flag for resetting the state at end of propagation. */
  101.     private boolean resetAtEnd;

  102.     /** Type of orbit to output (mean or osculating) <br/>
  103.      * <p>
  104.      * This is used only in the case of semi-analytical propagators where there is a clear separation between
  105.      * mean and short periodic elements. It is ignored by the Numerical propagator.
  106.      * </p>
  107.      */
  108.     private final PropagationType propagationType;

  109.     /** Build a new instance.
  110.      * @param integrator numerical integrator to use for propagation.
  111.      * @param propagationType type of orbit to output (mean or osculating).
  112.      * @param field Field used by default
  113.      */
  114.     protected FieldAbstractIntegratedPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator, final PropagationType propagationType) {
  115.         super(field);
  116.         detectors                      = new ArrayList<>();
  117.         ephemerisGenerators            = new ArrayList<>();
  118.         additionalDerivativesProviders = new ArrayList<>();
  119.         this.secondaryOffsets          = new HashMap<>();
  120.         this.integrator                = integrator;
  121.         this.propagationType           = propagationType;
  122.         this.resetAtEnd                = true;
  123.     }

  124.     /** Allow/disallow resetting the initial state at end of propagation.
  125.      * <p>
  126.      * By default, at the end of the propagation, the propagator resets the initial state
  127.      * to the final state, thus allowing a new propagation to be started from there without
  128.      * recomputing the part already performed. Calling this method with {@code resetAtEnd} set
  129.      * to false changes prevents such reset.
  130.      * </p>
  131.      * @param resetAtEnd if true, at end of each propagation, the {@link
  132.      * #getInitialState() initial state} will be reset to the final state of
  133.      * the propagation, otherwise the initial state will be preserved
  134.      * @since 9.0
  135.      */
  136.     public void setResetAtEnd(final boolean resetAtEnd) {
  137.         this.resetAtEnd = resetAtEnd;
  138.     }

  139.     /** Getter for the resetting flag regarding initial state.
  140.      * @return resetting flag
  141.      * @since 12.0
  142.      */
  143.     public boolean getResetAtEnd() {
  144.         return this.resetAtEnd;
  145.     }

  146.     /**
  147.      * Method called when initializing the attitude provider used when evaluating derivatives.
  148.      * @return attitude provider for derivatives
  149.      */
  150.     protected AttitudeProvider initializeAttitudeProviderForDerivatives() {
  151.         return getAttitudeProvider();
  152.     }

  153.     /** Initialize the mapper.
  154.      * @param field Field used by default
  155.      */
  156.     protected void initMapper(final Field<T> field) {
  157.         final T zero = field.getZero();
  158.         stateMapper = createMapper(null, zero.add(Double.NaN), null, null, null, null);
  159.     }

  160.     /** Get the integrator's name.
  161.      * @return name of underlying integrator
  162.      * @since 12.0
  163.      */
  164.     public String getIntegratorName() {
  165.         return integrator.getName();
  166.     }

  167.     /**  {@inheritDoc} */
  168.     @Override
  169.     public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
  170.         super.setAttitudeProvider(attitudeProvider);
  171.         stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
  172.                                    stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
  173.                                    attitudeProvider, stateMapper.getFrame());
  174.     }

  175.     /** Set propagation orbit type.
  176.      * @param orbitType orbit type to use for propagation
  177.      */
  178.     protected void setOrbitType(final OrbitType orbitType) {
  179.         stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
  180.                                    orbitType, stateMapper.getPositionAngleType(),
  181.                                    stateMapper.getAttitudeProvider(), stateMapper.getFrame());
  182.     }

  183.     /** Get propagation parameter type.
  184.      * @return orbit type used for propagation
  185.      */
  186.     protected OrbitType getOrbitType() {
  187.         return stateMapper.getOrbitType();
  188.     }

  189.     /** Check if only the mean elements should be used in a semi-analytical propagation.
  190.      * @return {@link PropagationType MEAN} if only mean elements have to be used or
  191.      *         {@link PropagationType OSCULATING} if osculating elements have to be also used.
  192.      */
  193.     protected PropagationType isMeanOrbit() {
  194.         return propagationType;
  195.     }

  196.     /** Get the propagation type.
  197.      * @return propagation type.
  198.      * @since 11.3.2
  199.      */
  200.     public PropagationType getPropagationType() {
  201.         return propagationType;
  202.     }

  203.     /** Set position angle type.
  204.      * <p>
  205.      * The position parameter type is meaningful only if {@link
  206.      * #getOrbitType() propagation orbit type}
  207.      * support it. As an example, it is not meaningful for propagation
  208.      * in {@link OrbitType#CARTESIAN Cartesian} parameters.
  209.      * </p>
  210.      * @param positionAngleType angle type to use for propagation
  211.      */
  212.     protected void setPositionAngleType(final PositionAngleType positionAngleType) {
  213.         stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
  214.                                    stateMapper.getOrbitType(), positionAngleType,
  215.                                    stateMapper.getAttitudeProvider(), stateMapper.getFrame());
  216.     }

  217.     /** Get propagation parameter type.
  218.      * @return angle type to use for propagation
  219.      */
  220.     protected PositionAngleType getPositionAngleType() {
  221.         return stateMapper.getPositionAngleType();
  222.     }

  223.     /** Set the central attraction coefficient μ.
  224.      * @param mu central attraction coefficient (m³/s²)
  225.      */
  226.     public void setMu(final T mu) {
  227.         stateMapper = createMapper(stateMapper.getReferenceDate(), mu,
  228.                                    stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
  229.                                    stateMapper.getAttitudeProvider(), stateMapper.getFrame());
  230.     }

  231.     /** Get the central attraction coefficient μ.
  232.      * @return mu central attraction coefficient (m³/s²)
  233.      * @see #setMu(CalculusFieldElement)
  234.      */
  235.     public T getMu() {
  236.         return stateMapper.getMu();
  237.     }

  238.     /** Get the number of calls to the differential equations computation method.
  239.      * <p>The number of calls is reset each time the {@link #propagate(FieldAbsoluteDate)}
  240.      * method is called.</p>
  241.      * @return number of calls to the differential equations computation method
  242.      */
  243.     public int getCalls() {
  244.         return calls;
  245.     }

  246.     /** {@inheritDoc} */
  247.     @Override
  248.     public boolean isAdditionalDataManaged(final String name) {

  249.         // first look at already integrated data
  250.         if (super.isAdditionalDataManaged(name)) {
  251.             return true;
  252.         }

  253.         // then look at states we integrate ourselves
  254.         for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  255.             if (provider.getName().equals(name)) {
  256.                 return true;
  257.             }
  258.         }

  259.         return false;
  260.     }

  261.     /** {@inheritDoc} */
  262.     @Override
  263.     public String[] getManagedAdditionalData() {
  264.         final String[] alreadyIntegrated = super.getManagedAdditionalData();
  265.         final String[] managed = new String[alreadyIntegrated.length + additionalDerivativesProviders.size()];
  266.         System.arraycopy(alreadyIntegrated, 0, managed, 0, alreadyIntegrated.length);
  267.         for (int i = 0; i < additionalDerivativesProviders.size(); ++i) {
  268.             managed[i + alreadyIntegrated.length] = additionalDerivativesProviders.get(i).getName();
  269.         }
  270.         return managed;
  271.     }

  272.     /** Add a provider for user-specified state derivatives to be integrated along with the orbit propagation.
  273.      * @param provider provider for additional derivatives
  274.      * @see #addAdditionalDataProvider(FieldAdditionalDataProvider)
  275.      * @since 11.1
  276.      */
  277.     public void addAdditionalDerivativesProvider(final FieldAdditionalDerivativesProvider<T> provider) {
  278.         // check if the name is already used
  279.         if (this.isAdditionalDataManaged(provider.getName())) {
  280.             // these derivatives are already registered, complain
  281.             throw new OrekitException(OrekitMessages.ADDITIONAL_STATE_NAME_ALREADY_IN_USE,
  282.                                       provider.getName());
  283.         }

  284.         // this is really a new set of derivatives, add it
  285.         additionalDerivativesProviders.add(provider);

  286.         secondaryOffsets.clear();

  287.     }

  288.     /** Get an unmodifiable list of providers for additional derivatives.
  289.      * @return providers for additional derivatives
  290.      * @since 11.1
  291.      */
  292.     public List<FieldAdditionalDerivativesProvider<T>> getAdditionalDerivativesProviders() {
  293.         return Collections.unmodifiableList(additionalDerivativesProviders);
  294.     }

  295.     /** {@inheritDoc} */
  296.     public <D extends FieldEventDetector<T>> void addEventDetector(final D detector) {
  297.         detectors.add(detector);
  298.     }

  299.     /** {@inheritDoc} */
  300.     public Collection<FieldEventDetector<T>> getEventDetectors() {
  301.         return Collections.unmodifiableCollection(detectors);
  302.     }

  303.     /** {@inheritDoc} */
  304.     public void clearEventsDetectors() {
  305.         detectors.clear();
  306.     }

  307.     /** Set up all user defined event detectors.
  308.      */
  309.     protected void setUpUserEventDetectors() {
  310.         for (final FieldEventDetector<T> detector : detectors) {
  311.             setUpEventDetector(integrator, detector);
  312.         }
  313.     }

  314.     /** Wrap an Orekit event detector and register it to the integrator.
  315.      * @param integ integrator into which event detector should be registered
  316.      * @param detector event detector to wrap
  317.      */
  318.     protected void setUpEventDetector(final FieldODEIntegrator<T> integ, final FieldEventDetector<T> detector) {
  319.         integ.addEventDetector(new FieldAdaptedEventDetector(detector));
  320.     }

  321.     /**
  322.      * Clear the ephemeris generators.
  323.      * @since 13.0
  324.      */
  325.     public void clearEphemerisGenerators() {
  326.         ephemerisGenerators.clear();
  327.     }

  328.     /** {@inheritDoc} */
  329.     @Override
  330.     public FieldEphemerisGenerator<T> getEphemerisGenerator() {
  331.         final FieldStoringStepHandler storingHandler = new FieldStoringStepHandler();
  332.         ephemerisGenerators.add(storingHandler);
  333.         return storingHandler;
  334.     }

  335.     /** Create a mapper between raw double components and spacecraft state.
  336.     /** Simple constructor.
  337.      * <p>
  338.      * The position parameter type is meaningful only if {@link
  339.      * #getOrbitType() propagation orbit type}
  340.      * support it. As an example, it is not meaningful for propagation
  341.      * in {@link OrbitType#CARTESIAN Cartesian} parameters.
  342.      * </p>
  343.      * @param referenceDate reference date
  344.      * @param mu central attraction coefficient (m³/s²)
  345.      * @param orbitType orbit type to use for mapping
  346.      * @param positionAngleType angle type to use for propagation
  347.      * @param attitudeProvider attitude provider
  348.      * @param frame inertial frame
  349.      * @return new mapper
  350.      */
  351.     protected abstract FieldStateMapper<T> createMapper(FieldAbsoluteDate<T> referenceDate, T mu,
  352.                                                         OrbitType orbitType, PositionAngleType positionAngleType,
  353.                                                         AttitudeProvider attitudeProvider, Frame frame);

  354.     /** Get the differential equations to integrate (for main state only).
  355.      * @param integ numerical integrator to use for propagation.
  356.      * @return differential equations for main state
  357.      */
  358.     protected abstract MainStateEquations<T> getMainStateEquations(FieldODEIntegrator<T> integ);

  359.     /** {@inheritDoc} */
  360.     @Override
  361.     public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> target) {
  362.         if (getStartDate() == null) {
  363.             if (getInitialState() == null) {
  364.                 throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
  365.             }
  366.             setStartDate(getInitialState().getDate());
  367.         }
  368.         return propagate(getStartDate(), target);
  369.     }

  370.     /** {@inheritDoc} */
  371.     public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> tStart, final FieldAbsoluteDate<T> tEnd) {

  372.         if (getInitialState() == null) {
  373.             throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
  374.         }

  375.         // make sure the integrator will be reset properly even if we change its events handlers and step handlers
  376.         try (IntegratorResetter<T> resetter = new IntegratorResetter<>(integrator)) {

  377.             // Initialize additional states
  378.             initializeAdditionalData(tEnd);

  379.             if (!tStart.equals(getInitialState().getDate())) {
  380.                 // if propagation start date is not initial date,
  381.                 // propagate from initial to start date without event detection
  382.                 try (IntegratorResetter<T> startResetter = new IntegratorResetter<>(integrator)) {
  383.                     integrateDynamics(tStart);
  384.                 }
  385.             }

  386.             // set up events added by user
  387.             setUpUserEventDetectors();

  388.             // set up step handlers
  389.             for (final FieldOrekitStepHandler<T> handler : getMultiplexer().getHandlers()) {
  390.                 integrator.addStepHandler(new FieldAdaptedStepHandler(handler));
  391.             }
  392.             for (final FieldStoringStepHandler generator : ephemerisGenerators) {
  393.                 generator.setEndDate(tEnd);
  394.                 integrator.addStepHandler(generator);
  395.             }

  396.             // propagate from start date to end date with event detection
  397.             final FieldSpacecraftState<T> state = integrateDynamics(tEnd);

  398.             // Finalize event detectors
  399.             getEventDetectors().forEach(detector -> detector.finish(state));

  400.             return state;
  401.         }

  402.     }

  403.     /** Reset initial state with a given propagation type.
  404.      *
  405.      * <p> By default this method returns the same as method resetInitialState(FieldSpacecraftState)
  406.      * <p> Its purpose is mostly to be derived in FieldDSSTPropagator
  407.      *
  408.      * @param state new initial state to consider
  409.      * @param stateType type of the new state (mean or osculating)
  410.      * @since 12.1.3
  411.      */
  412.     public void resetInitialState(final FieldSpacecraftState<T> state, final PropagationType stateType) {
  413.         // Default behavior, do not take propagation type into account
  414.         resetInitialState(state);
  415.     }

  416.     /** Propagation with or without event detection.
  417.      * @param tEnd target date to which orbit should be propagated
  418.      * @return state at end of propagation
  419.      */
  420.     private FieldSpacecraftState<T> integrateDynamics(final FieldAbsoluteDate<T> tEnd) {
  421.         try {

  422.             initializePropagation();

  423.             if (getInitialState().getDate().equals(tEnd)) {
  424.                 // don't extrapolate
  425.                 return getInitialState();
  426.             }
  427.             // space dynamics view
  428.             stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(),
  429.                                        stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
  430.                                        stateMapper.getAttitudeProvider(), getInitialState().getFrame());

  431.             // set propagation orbit type
  432.             if (Double.isNaN(getMu().getReal()) && getInitialState().isOrbitDefined()) {
  433.                 setMu(getInitialState().getOrbit().getMu());
  434.             }

  435.             if (getInitialState().getMass().getReal() <= 0.0) {
  436.                 throw new OrekitException(OrekitMessages.NOT_POSITIVE_SPACECRAFT_MASS,
  437.                                                getInitialState().getMass());
  438.             }

  439.             // convert space flight dynamics API to math API
  440.             final FieldSpacecraftState<T> initialIntegrationState = getInitialIntegrationState();
  441.             final FieldODEState<T> mathInitialState = createInitialState(initialIntegrationState);
  442.             final FieldExpandableODE<T> mathODE = createODE(integrator);

  443.             // mathematical integration
  444.             final FieldODEStateAndDerivative<T> mathFinalState;
  445.             beforeIntegration(initialIntegrationState, tEnd);
  446.             mathFinalState = integrator.integrate(mathODE, mathInitialState,
  447.                                                   tEnd.durationFrom(getInitialState().getDate()));

  448.             afterIntegration();

  449.             // get final state
  450.             FieldSpacecraftState<T> finalState =
  451.                             stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(), tEnd),
  452.                                                         mathFinalState.getPrimaryState(),
  453.                                                         mathFinalState.getPrimaryDerivative(),
  454.                                                         propagationType);

  455.             finalState = updateAdditionalStatesAndDerivatives(finalState, mathFinalState);

  456.             if (resetAtEnd) {
  457.                 resetInitialState(finalState, propagationType);
  458.                 setStartDate(finalState.getDate());
  459.             }

  460.             return finalState;

  461.         } catch (OrekitException pe) {
  462.             throw pe;
  463.         } catch (MathIllegalArgumentException | MathIllegalStateException me) {
  464.             throw OrekitException.unwrap(me);
  465.         }
  466.     }

  467.     /**
  468.      * Returns an updated version of the inputted state with additional states, including
  469.      * from derivatives providers.
  470.      * @param originalState input state
  471.      * @param os ODE state and derivative
  472.      * @return new state
  473.      * @since 12.1
  474.      */
  475.     private FieldSpacecraftState<T> updateAdditionalStatesAndDerivatives(final FieldSpacecraftState<T> originalState,
  476.                                                                          final FieldODEStateAndDerivative<T> os) {
  477.         FieldSpacecraftState<T> updatedState = originalState;
  478.         if (os.getNumberOfSecondaryStates() > 0) {
  479.             final T[] secondary           = os.getSecondaryState(1);
  480.             final T[] secondaryDerivative = os.getSecondaryDerivative(1);
  481.             for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  482.                 final String name      = provider.getName();
  483.                 final int    offset    = secondaryOffsets.get(name);
  484.                 final int    dimension = provider.getDimension();
  485.                 updatedState = updatedState.addAdditionalData(name, Arrays.copyOfRange(secondary, offset, offset + dimension));
  486.                 updatedState = updatedState.addAdditionalStateDerivative(name, Arrays.copyOfRange(secondaryDerivative, offset, offset + dimension));
  487.             }
  488.         }
  489.         return updateAdditionalData(updatedState);
  490.     }

  491.     /** Get the initial state for integration.
  492.      * @return initial state for integration
  493.      */
  494.     protected FieldSpacecraftState<T> getInitialIntegrationState() {
  495.         return getInitialState();
  496.     }

  497.     /** Create an initial state.
  498.      * @param initialState initial state in flight dynamics world
  499.      * @return initial state in mathematics world
  500.      */
  501.     private FieldODEState<T> createInitialState(final FieldSpacecraftState<T> initialState) {

  502.         // retrieve initial state
  503.         final T[] primary  = MathArrays.buildArray(initialState.getMass().getField(), getBasicDimension());
  504.         stateMapper.mapStateToArray(initialState, primary, null);

  505.         if (secondaryOffsets.isEmpty()) {
  506.             // compute dimension of the secondary state
  507.             int offset = 0;
  508.             for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  509.                 secondaryOffsets.put(provider.getName(), offset);
  510.                 offset += provider.getDimension();
  511.             }
  512.             secondaryOffsets.put(SECONDARY_DIMENSION, offset);
  513.         }

  514.         return new FieldODEState<>(initialState.getMass().getField().getZero(), primary, secondary(initialState));

  515.     }

  516.     /** Create secondary state.
  517.      * @param state spacecraft state
  518.      * @return secondary state
  519.      * @since 11.1
  520.      */
  521.     private T[][] secondary(final FieldSpacecraftState<T> state) {

  522.         if (secondaryOffsets.isEmpty()) {
  523.             return null;
  524.         }

  525.         final T[][] secondary = MathArrays.buildArray(state.getDate().getField(), 1, secondaryOffsets.get(SECONDARY_DIMENSION));
  526.         for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  527.             final String name       = provider.getName();
  528.             final int    offset     = secondaryOffsets.get(name);
  529.             final T[]    additional = state.getAdditionalState(name);
  530.             System.arraycopy(additional, 0, secondary[0], offset, additional.length);
  531.         }

  532.         return secondary;

  533.     }

  534.     /** Create secondary state derivative.
  535.      * @param state spacecraft state
  536.      * @return secondary state derivative
  537.      * @since 11.1
  538.      */
  539.     private T[][] secondaryDerivative(final FieldSpacecraftState<T> state) {

  540.         if (secondaryOffsets.isEmpty()) {
  541.             return null;
  542.         }

  543.         final T[][] secondaryDerivative = MathArrays.buildArray(state.getDate().getField(), 1, secondaryOffsets.get(SECONDARY_DIMENSION));
  544.         for (final FieldAdditionalDerivativesProvider<T> providcer : additionalDerivativesProviders) {
  545.             final String name       = providcer.getName();
  546.             final int    offset     = secondaryOffsets.get(name);
  547.             final T[]    additionalDerivative = state.getAdditionalStateDerivative(name);
  548.             System.arraycopy(additionalDerivative, 0, secondaryDerivative[0], offset, additionalDerivative.length);
  549.         }

  550.         return secondaryDerivative;

  551.     }

  552.     /** Create an ODE with all equations.
  553.      * @param integ numerical integrator to use for propagation.
  554.      * @return a new ode
  555.      */
  556.     private FieldExpandableODE<T> createODE(final FieldODEIntegrator<T> integ) {

  557.         final FieldExpandableODE<T> ode =
  558.                 new FieldExpandableODE<>(new ConvertedMainStateEquations(getMainStateEquations(integ)));

  559.         // secondary part of the ODE
  560.         if (!additionalDerivativesProviders.isEmpty()) {
  561.             ode.addSecondaryEquations(new ConvertedSecondaryStateEquations());
  562.         }

  563.         return ode;

  564.     }

  565.     /** Method called just before integration.
  566.      * <p>
  567.      * The default implementation does nothing, it may be specialized in subclasses.
  568.      * </p>
  569.      * @param initialState initial state
  570.      * @param tEnd target date at which state should be propagated
  571.      */
  572.     protected void beforeIntegration(final FieldSpacecraftState<T> initialState,
  573.                                      final FieldAbsoluteDate<T> tEnd) {
  574.         // do nothing by default
  575.     }

  576.     /** Method called just after integration.
  577.      * <p>
  578.      * The default implementation does nothing, it may be specialized in subclasses.
  579.      * </p>
  580.      */
  581.     protected void afterIntegration() {
  582.         // do nothing by default
  583.     }

  584.     /** Get state vector dimension without additional parameters.
  585.      * @return state vector dimension without additional parameters.
  586.      */
  587.     public int getBasicDimension() {
  588.         return 7;

  589.     }

  590.     /** Get the integrator used by the propagator.
  591.      * @return the integrator.
  592.      */
  593.     protected FieldODEIntegrator<T> getIntegrator() {
  594.         return integrator;
  595.     }

  596.     /** Convert a state from mathematical world to space flight dynamics world.
  597.      * @param os mathematical state
  598.      * @return space flight dynamics state
  599.      */
  600.     private FieldSpacecraftState<T> convert(final FieldODEStateAndDerivative<T> os) {

  601.         FieldSpacecraftState<T> s =
  602.                         stateMapper.mapArrayToState(os.getTime(),
  603.                                                     os.getPrimaryState(),
  604.                                                     os.getPrimaryDerivative(),
  605.                                                     propagationType);
  606.         if (os.getNumberOfSecondaryStates() > 0) {
  607.             final T[] secondary           = os.getSecondaryState(1);
  608.             final T[] secondaryDerivative = os.getSecondaryDerivative(1);
  609.             for (final FieldAdditionalDerivativesProvider<T> equations : additionalDerivativesProviders) {
  610.                 final String name      = equations.getName();
  611.                 final int    offset    = secondaryOffsets.get(name);
  612.                 final int    dimension = equations.getDimension();
  613.                 s = s.addAdditionalData(name, Arrays.copyOfRange(secondary, offset, offset + dimension));
  614.                 s = s.addAdditionalStateDerivative(name, Arrays.copyOfRange(secondaryDerivative, offset, offset + dimension));
  615.             }
  616.         }
  617.         s = updateAdditionalData(s);

  618.         return s;

  619.     }

  620.     /** Convert a state from space flight dynamics world to mathematical world.
  621.      * @param state space flight dynamics state
  622.      * @return mathematical state
  623.      */
  624.     private FieldODEStateAndDerivative<T> convert(final FieldSpacecraftState<T> state) {

  625.         // retrieve initial state
  626.         final T[] primary    = MathArrays.buildArray(getField(), getBasicDimension());
  627.         final T[] primaryDot = MathArrays.buildArray(getField(), getBasicDimension());
  628.         stateMapper.mapStateToArray(state, primary, primaryDot);

  629.         // secondary part of the ODE
  630.         final T[][] secondary           = secondary(state);
  631.         final T[][] secondaryDerivative = secondaryDerivative(state);

  632.         return new FieldODEStateAndDerivative<>(stateMapper.mapDateToDouble(state.getDate()),
  633.                                                 primary, primaryDot,
  634.                                                 secondary, secondaryDerivative);

  635.     }

  636.     /** Differential equations for the main state (orbit, attitude and mass).
  637.      * @param <T> type of the field element
  638.      */
  639.     public interface MainStateEquations<T extends CalculusFieldElement<T>> {

  640.         /**
  641.          * Initialize the equations at the start of propagation. This method will be
  642.          * called before any calls to {@link #computeDerivatives(FieldSpacecraftState)}.
  643.          *
  644.          * <p> The default implementation of this method does nothing.
  645.          *
  646.          * @param initialState initial state information at the start of propagation.
  647.          * @param target       date of propagation. Not equal to {@code
  648.          *                     initialState.getDate()}.
  649.          */
  650.         void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target);

  651.         /** Compute differential equations for main state.
  652.          * @param state current state
  653.          * @return derivatives of main state
  654.          */
  655.         T[] computeDerivatives(FieldSpacecraftState<T> state);

  656.     }

  657.     /** Differential equations for the main state (orbit, attitude and mass), with converted API. */
  658.     private class ConvertedMainStateEquations implements FieldOrdinaryDifferentialEquation<T> {

  659.         /** Main state equations. */
  660.         private final MainStateEquations<T> main;

  661.         /** Simple constructor.
  662.          * @param main main state equations
  663.          */
  664.         ConvertedMainStateEquations(final MainStateEquations<T> main) {
  665.             this.main = main;
  666.             calls = 0;
  667.         }

  668.         /** {@inheritDoc} */
  669.         public int getDimension() {
  670.             return getBasicDimension();
  671.         }

  672.         @Override
  673.         public void init(final T t0, final T[] y0, final T finalTime) {
  674.             // update space dynamics view
  675.             FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t0, y0, null, PropagationType.MEAN);
  676.             initialState = updateAdditionalData(initialState);
  677.             initialState = updateStatesFromAdditionalDerivativesIfKnown(initialState);
  678.             final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
  679.             main.init(initialState, target);
  680.             attitudeProviderForDerivatives = initializeAttitudeProviderForDerivatives();
  681.         }

  682.         /**
  683.          * Returns an updated version of the inputted state, with additional states from
  684.          * derivatives providers as given in the stored initial state.
  685.          * @param originalState input state
  686.          * @return new state
  687.          * @since 12.1
  688.          */
  689.         private FieldSpacecraftState<T> updateStatesFromAdditionalDerivativesIfKnown(final FieldSpacecraftState<T> originalState) {
  690.             FieldSpacecraftState<T> updatedState = originalState;
  691.             final FieldSpacecraftState<T> storedInitialState = getInitialState();
  692.             final T originalTime = stateMapper.mapDateToDouble(originalState.getDate());
  693.             if (storedInitialState != null && stateMapper.mapDateToDouble(storedInitialState.getDate()).subtract(originalTime).isZero()) {
  694.                 for (final FieldAdditionalDerivativesProvider<T> provider: additionalDerivativesProviders) {
  695.                     final String name = provider.getName();
  696.                     final T[] value = storedInitialState.getAdditionalState(name);
  697.                     updatedState = updatedState.addAdditionalData(name, value);
  698.                 }
  699.             }
  700.             return updatedState;
  701.         }

  702.         /** {@inheritDoc} */
  703.         public T[] computeDerivatives(final T t, final T[] y) {

  704.             // increment calls counter
  705.             ++calls;

  706.             // update space dynamics view
  707.             stateMapper.setAttitudeProvider(attitudeProviderForDerivatives);
  708.             FieldSpacecraftState<T> currentState = stateMapper.mapArrayToState(t, y, null, PropagationType.MEAN);
  709.             stateMapper.setAttitudeProvider(getAttitudeProvider());
  710.             currentState = updateAdditionalData(currentState);

  711.             // compute main state differentials
  712.             return main.computeDerivatives(currentState);

  713.         }

  714.     }

  715.     /** Differential equations for the secondary state (Jacobians, user variables ...), with converted API. */
  716.     private class ConvertedSecondaryStateEquations implements FieldSecondaryODE<T> {

  717.         /** Dimension of the combined additional states. */
  718.         private final int combinedDimension;

  719.         /** Simple constructor.
  720.          */
  721.         ConvertedSecondaryStateEquations() {
  722.             this.combinedDimension = secondaryOffsets.get(SECONDARY_DIMENSION);
  723.         }

  724.         /** {@inheritDoc} */
  725.         @Override
  726.         public int getDimension() {
  727.             return combinedDimension;
  728.         }

  729.         /** {@inheritDoc} */
  730.         @Override
  731.         public void init(final T t0, final T[] primary0,
  732.                          final T[] secondary0, final T finalTime) {
  733.             // update space dynamics view
  734.             final FieldSpacecraftState<T> initialState = convert(t0, primary0, null, secondary0);

  735.             final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
  736.             for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  737.                 provider.init(initialState, target);
  738.             }

  739.         }

  740.         /** {@inheritDoc} */
  741.         @Override
  742.         public T[] computeDerivatives(final T t, final T[] primary,
  743.                                       final T[] primaryDot, final T[] secondary) {

  744.             // update space dynamics view
  745.             // the integrable generators generate method will be called here,
  746.             // according to the generators yield order
  747.             FieldSpacecraftState<T> updated = convert(t, primary, primaryDot, secondary);

  748.             // set up queue for equations
  749.             final Queue<FieldAdditionalDerivativesProvider<T>> pending = new LinkedList<>(additionalDerivativesProviders);

  750.             // gather the derivatives from all additional equations, taking care of dependencies
  751.             final T[] secondaryDot = MathArrays.buildArray(t.getField(), combinedDimension);
  752.             int yieldCount = 0;
  753.             while (!pending.isEmpty()) {
  754.                 final FieldAdditionalDerivativesProvider<T> equations = pending.remove();
  755.                 if (equations.yields(updated)) {
  756.                     // these equations have to wait for another set,
  757.                     // we put them again in the pending queue
  758.                     pending.add(equations);
  759.                     if (++yieldCount >= pending.size()) {
  760.                         // all pending equations yielded!, they probably need data not yet initialized
  761.                         // we let the propagation proceed, if these data are really needed right now
  762.                         // an appropriate exception will be triggered when caller tries to access them
  763.                         break;
  764.                     }
  765.                 } else {
  766.                     // we can use these equations right now
  767.                     final String                      name           = equations.getName();
  768.                     final int                         offset         = secondaryOffsets.get(name);
  769.                     final int                         dimension      = equations.getDimension();
  770.                     final FieldCombinedDerivatives<T> derivatives    = equations.combinedDerivatives(updated);
  771.                     final T[]                         additionalPart = derivatives.getAdditionalDerivatives();
  772.                     final T[]                         mainPart       = derivatives.getMainStateDerivativesIncrements();
  773.                     System.arraycopy(additionalPart, 0, secondaryDot, offset, dimension);
  774.                     updated = updated.addAdditionalStateDerivative(name, additionalPart);
  775.                     if (mainPart != null) {
  776.                         // this equation does change the main state derivatives
  777.                         for (int i = 0; i < mainPart.length; ++i) {
  778.                             primaryDot[i] = primaryDot[i].add(mainPart[i]);
  779.                         }
  780.                     }
  781.                     yieldCount = 0;
  782.                 }
  783.             }

  784.             return secondaryDot;

  785.         }

  786.         /** Convert mathematical view to space view.
  787.          * @param t current value of the independent <I>time</I> variable
  788.          * @param primary array containing the current value of the primary state vector
  789.          * @param primaryDot array containing the derivative of the primary state vector
  790.          * @param secondary array containing the current value of the secondary state vector
  791.          * @return space view of the state
  792.          */
  793.         private FieldSpacecraftState<T> convert(final T t, final T[] primary,
  794.                                                 final T[] primaryDot, final T[] secondary) {

  795.             FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t, primary, primaryDot, PropagationType.MEAN);

  796.             for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  797.                 final String name      = provider.getName();
  798.                 final int    offset    = secondaryOffsets.get(name);
  799.                 final int    dimension = provider.getDimension();
  800.                 initialState = initialState.addAdditionalData(name, Arrays.copyOfRange(secondary, offset, offset + dimension));
  801.             }

  802.             return updateAdditionalData(initialState);

  803.         }

  804.     }

  805.     /** Adapt an {@link org.orekit.propagation.events.FieldEventDetector<T>}
  806.      * to Hipparchus {@link org.hipparchus.ode.events.FieldODEEventDetector<T>} interface.
  807.      * @author Fabien Maussion
  808.      */
  809.     private class FieldAdaptedEventDetector implements FieldODEEventDetector<T> {

  810.         /** Underlying event detector. */
  811.         private final FieldEventDetector<T> detector;

  812.         /** Underlying event handler.
  813.          * @since 12.0
  814.          */
  815.         private final FieldEventHandler<T> handler;

  816.         /** Time of the previous call to g. */
  817.         private T lastT;

  818.         /** Value from the previous call to g. */
  819.         private T lastG;

  820.         /** Build a wrapped event detector.
  821.          * @param detector event detector to wrap
  822.         */
  823.         FieldAdaptedEventDetector(final FieldEventDetector<T> detector) {
  824.             this.detector = detector;
  825.             this.handler  = detector.getHandler();
  826.             this.lastT    = getField().getZero().add(Double.NaN);
  827.             this.lastG    = getField().getZero().add(Double.NaN);
  828.         }

  829.         /** {@inheritDoc} */
  830.         @Override
  831.         public FieldAdaptableInterval<T> getMaxCheckInterval() {
  832.             return (state, isForward) -> detector.getMaxCheckInterval().currentInterval(convert(state), isForward);
  833.         }

  834.         /** {@inheritDoc} */
  835.         @Override
  836.         public int getMaxIterationCount() {
  837.             return detector.getMaxIterationCount();
  838.         }

  839.         /** {@inheritDoc} */
  840.         @Override
  841.         public FieldBracketingNthOrderBrentSolver<T> getSolver() {
  842.             final T zero = detector.getThreshold().getField().getZero();
  843.             return new FieldBracketingNthOrderBrentSolver<>(zero, detector.getThreshold(), zero, 5);
  844.         }

  845.         /** {@inheritDoc} */
  846.         @Override
  847.         public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
  848.             detector.init(convert(s0), stateMapper.mapDoubleToDate(t));
  849.             this.lastT = getField().getZero().add(Double.NaN);
  850.             this.lastG = getField().getZero().add(Double.NaN);
  851.         }

  852.         /** {@inheritDoc} */
  853.         @Override
  854.         public void reset(final FieldODEStateAndDerivative<T> intermediateState, final T finalTime) {
  855.             detector.reset(convert(intermediateState), stateMapper.mapDoubleToDate(finalTime));
  856.             this.lastT = getField().getZero().add(Double.NaN);
  857.             this.lastG = getField().getZero().add(Double.NaN);
  858.         }

  859.         /** {@inheritDoc} */
  860.         public T g(final FieldODEStateAndDerivative<T> s) {
  861.             if (!Precision.equals(lastT.getReal(), s.getTime().getReal(), 0)) {
  862.                 lastT = s.getTime();
  863.                 lastG = detector.g(convert(s));
  864.             }
  865.             return lastG;
  866.         }

  867.         /** {@inheritDoc} */
  868.         public FieldODEEventHandler<T> getHandler() {

  869.             return new FieldODEEventHandler<T>() {

  870.                 /** {@inheritDoc} */
  871.                 public Action eventOccurred(final FieldODEStateAndDerivative<T> s,
  872.                                             final FieldODEEventDetector<T> d,
  873.                                             final boolean increasing) {
  874.                     return handler.eventOccurred(convert(s), detector, increasing);
  875.                 }

  876.                 /** {@inheritDoc} */
  877.                 @Override
  878.                 public FieldODEState<T> resetState(final FieldODEEventDetector<T> d,
  879.                                                    final FieldODEStateAndDerivative<T> s) {

  880.                     final FieldSpacecraftState<T> oldState = convert(s);
  881.                     final FieldSpacecraftState<T> newState = handler.resetState(detector, oldState);
  882.                     stateChanged(newState);

  883.                     // main part
  884.                     final T[] primary    = MathArrays.buildArray(getField(), s.getPrimaryStateDimension());
  885.                     stateMapper.mapStateToArray(newState, primary, null);

  886.                     // secondary part
  887.                     final T[][] secondary = MathArrays.buildArray(getField(), 1, additionalDerivativesProviders.size());
  888.                     for (final FieldAdditionalDerivativesProvider<T> provider : additionalDerivativesProviders) {
  889.                         final String name      = provider.getName();
  890.                         final int    offset    = secondaryOffsets.get(name);
  891.                         final int    dimension = provider.getDimension();
  892.                         System.arraycopy(newState.getAdditionalData(name), 0, secondary[0], offset, dimension);
  893.                     }

  894.                     return new FieldODEState<>(newState.getDate().durationFrom(getStartDate()),
  895.                                                primary, secondary);
  896.                 }
  897.             };

  898.         }

  899.     }

  900.     /** Adapt an {@link org.orekit.propagation.sampling.FieldOrekitStepHandler<T>}
  901.      * to Hipparchus {@link FieldODEStepHandler<T>} interface.
  902.      * @author Luc Maisonobe
  903.      */
  904.     private class FieldAdaptedStepHandler implements FieldODEStepHandler<T> {

  905.         /** Underlying handler. */
  906.         private final FieldOrekitStepHandler<T> handler;

  907.         /** Build an instance.
  908.          * @param handler underlying handler to wrap
  909.          */
  910.         FieldAdaptedStepHandler(final FieldOrekitStepHandler<T> handler) {
  911.             this.handler = handler;
  912.         }

  913.         /** {@inheritDoc} */
  914.         @Override
  915.         public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
  916.             handler.init(convert(s0), stateMapper.mapDoubleToDate(t));
  917.         }

  918.         /** {@inheritDoc} */
  919.         public void handleStep(final FieldODEStateInterpolator<T> interpolator) {
  920.             handler.handleStep(new FieldAdaptedStepInterpolator(interpolator));
  921.         }

  922.         /** {@inheritDoc} */
  923.         @Override
  924.         public void finish(final FieldODEStateAndDerivative<T> finalState) {
  925.             handler.finish(convert(finalState));
  926.         }

  927.     }

  928.     /** Adapt an {@link org.orekit.propagation.sampling.FieldOrekitStepInterpolator<T>}
  929.      * to Hipparchus {@link FieldODEStateInterpolator<T>} interface.
  930.      * @author Luc Maisonobe
  931.      */
  932.     private class FieldAdaptedStepInterpolator implements FieldOrekitStepInterpolator<T> {

  933.         /** Underlying raw rawInterpolator. */
  934.         private final FieldODEStateInterpolator<T> mathInterpolator;

  935.         /** Build an instance.
  936.          * @param mathInterpolator underlying raw interpolator
  937.          */
  938.         FieldAdaptedStepInterpolator(final FieldODEStateInterpolator<T> mathInterpolator) {
  939.             this.mathInterpolator = mathInterpolator;
  940.         }

  941.         /** {@inheritDoc}} */
  942.         @Override
  943.         public FieldSpacecraftState<T> getPreviousState() {
  944.             return convert(mathInterpolator.getPreviousState());
  945.         }

  946.         /** {@inheritDoc}} */
  947.         @Override
  948.         public FieldSpacecraftState<T> getCurrentState() {
  949.             return convert(mathInterpolator.getCurrentState());
  950.         }

  951.         /** {@inheritDoc}} */
  952.         @Override
  953.         public FieldSpacecraftState<T> getInterpolatedState(final FieldAbsoluteDate<T> date) {
  954.             return convert(mathInterpolator.getInterpolatedState(date.durationFrom(getStartDate())));
  955.         }

  956.         /** Check is integration direction is forward in date.
  957.          * @return true if integration is forward in date
  958.          */
  959.         public boolean isForward() {
  960.             return mathInterpolator.isForward();
  961.         }

  962.         /** {@inheritDoc}} */
  963.         @Override
  964.         public FieldAdaptedStepInterpolator restrictStep(final FieldSpacecraftState<T> newPreviousState,
  965.                                                          final FieldSpacecraftState<T> newCurrentState) {
  966.             try {
  967.                 final AbstractFieldODEStateInterpolator<T> aosi = (AbstractFieldODEStateInterpolator<T>) mathInterpolator;
  968.                 return new FieldAdaptedStepInterpolator(aosi.restrictStep(convert(newPreviousState),
  969.                                                                           convert(newCurrentState)));
  970.             } catch (ClassCastException cce) {
  971.                 // this should never happen
  972.                 throw new OrekitInternalError(cce);
  973.             }
  974.         }

  975.     }

  976.     /** Specialized step handler storing interpolators for ephemeris generation.
  977.      * @since 11.0
  978.      */
  979.     private class FieldStoringStepHandler implements FieldODEStepHandler<T>, FieldEphemerisGenerator<T> {

  980.         /** Underlying raw mathematical model. */
  981.         private FieldDenseOutputModel<T> model;

  982.         /** the user supplied end date. Propagation may not end on this date. */
  983.         private FieldAbsoluteDate<T> endDate;

  984.         /** Generated ephemeris. */
  985.         private FieldBoundedPropagator<T> ephemeris;

  986.         /** Last interpolator handled by the object.*/
  987.         private  FieldODEStateInterpolator<T> lastInterpolator;

  988.         /** Set the end date.
  989.          * @param endDate end date
  990.          */
  991.         public void setEndDate(final FieldAbsoluteDate<T> endDate) {
  992.             this.endDate = endDate;
  993.         }

  994.         /** {@inheritDoc} */
  995.         @Override
  996.         public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
  997.             this.model = new FieldDenseOutputModel<>();
  998.             model.init(s0, t);

  999.             // ephemeris will be generated when last step is processed
  1000.             this.ephemeris = null;

  1001.             this.lastInterpolator = null;

  1002.         }

  1003.         /** {@inheritDoc} */
  1004.         @Override
  1005.         public FieldBoundedPropagator<T> getGeneratedEphemeris() {
  1006.             // Each time we try to get the ephemeris, rebuild it using the last data.
  1007.             buildEphemeris();
  1008.             return ephemeris;
  1009.         }

  1010.         /** {@inheritDoc} */
  1011.         @Override
  1012.         public void handleStep(final FieldODEStateInterpolator<T> interpolator) {
  1013.             model.handleStep(interpolator);
  1014.             lastInterpolator = interpolator;
  1015.         }

  1016.         /** {@inheritDoc} */
  1017.         @Override
  1018.         public void finish(final FieldODEStateAndDerivative<T> finalState) {
  1019.             buildEphemeris();
  1020.         }

  1021.         /** Method used to produce ephemeris at a given time.
  1022.          * Can be used at multiple times, updating the ephemeris to
  1023.          * its last state.
  1024.          */
  1025.         private void buildEphemeris() {
  1026.             // buildEphemeris was built in order to allow access to what was previously the finish method.
  1027.             // This now allows to call it through getGeneratedEphemeris, therefore through an external call,
  1028.             // which was not previously the case.

  1029.             // Update the model's finalTime with the last interpolator.
  1030.             model.finish(lastInterpolator.getCurrentState());

  1031.             // set up the boundary dates
  1032.             final T tI = model.getInitialTime();
  1033.             final T tF = model.getFinalTime();
  1034.             // tI is almost? always zero
  1035.             final FieldAbsoluteDate<T> startDate =
  1036.                             stateMapper.mapDoubleToDate(tI);
  1037.             final FieldAbsoluteDate<T> finalDate =
  1038.                             stateMapper.mapDoubleToDate(tF, this.endDate);
  1039.             final FieldAbsoluteDate<T> minDate;
  1040.             final FieldAbsoluteDate<T> maxDate;
  1041.             if (tF.getReal() < tI.getReal()) {
  1042.                 minDate = finalDate;
  1043.                 maxDate = startDate;
  1044.             } else {
  1045.                 minDate = startDate;
  1046.                 maxDate = finalDate;
  1047.             }

  1048.             // get the initial additional data that are not managed
  1049.             final FieldDataDictionary<T> unmanaged = new FieldDataDictionary<>(startDate.getField());
  1050.             for (final FieldDataDictionary<T>.Entry initial : getInitialState().getAdditionalDataValues().getData()) {
  1051.                 if (!FieldAbstractIntegratedPropagator.this.isAdditionalDataManaged(initial.getKey())) {
  1052.                     // this additional state was in the initial state, but is unknown to the propagator
  1053.                     // we simply copy its initial value as is
  1054.                     unmanaged.put(initial.getKey(), initial.getValue());
  1055.                 }
  1056.             }

  1057.             // get the names of additional states managed by differential equations
  1058.             final String[] names      = new String[additionalDerivativesProviders.size()];
  1059.             final int[]    dimensions = new int[additionalDerivativesProviders.size()];
  1060.             for (int i = 0; i < names.length; ++i) {
  1061.                 names[i] = additionalDerivativesProviders.get(i).getName();
  1062.                 dimensions[i] = additionalDerivativesProviders.get(i).getDimension();
  1063.             }

  1064.             // create the ephemeris
  1065.             ephemeris = new FieldIntegratedEphemeris<>(startDate, minDate, maxDate,
  1066.                                                        stateMapper, getAttitudeProvider(), propagationType, model,
  1067.                                                        unmanaged, getAdditionalDataProviders(),
  1068.                                                        names, dimensions);

  1069.         }

  1070.     }

  1071.     /** Wrapper for resetting an integrator handlers.
  1072.      * <p>
  1073.      * This class is intended to be used in a try-with-resource statement.
  1074.      * If propagator-specific event handlers and step handlers are added to
  1075.      * the integrator in the try block, they will be removed automatically
  1076.      * when leaving the block, so the integrator only keep its own handlers
  1077.      * between calls to {@link FieldAbstractIntegratedPropagator#propagate(FieldAbsoluteDate, FieldAbsoluteDate).
  1078.      * </p>
  1079.      * @param <T> the type of the field elements
  1080.      * @since 11.0
  1081.      */
  1082.     private static class IntegratorResetter<T extends CalculusFieldElement<T>> implements AutoCloseable {

  1083.         /** Wrapped integrator. */
  1084.         private final FieldODEIntegrator<T> integrator;

  1085.         /** Initial event detectors list. */
  1086.         private final List<FieldODEEventDetector<T>> detectors;

  1087.         /** Initial step handlers list. */
  1088.         private final List<FieldODEStepHandler<T>> stepHandlers;

  1089.         /** Simple constructor.
  1090.          * @param integrator wrapped integrator
  1091.          */
  1092.         IntegratorResetter(final FieldODEIntegrator<T> integrator) {
  1093.             this.integrator   = integrator;
  1094.             this.detectors    = new ArrayList<>(integrator.getEventDetectors());
  1095.             this.stepHandlers = new ArrayList<>(integrator.getStepHandlers());
  1096.         }

  1097.         /** {@inheritDoc}
  1098.          * <p>
  1099.          * Reset event handlers and step handlers back to the initial list
  1100.          * </p>
  1101.          */
  1102.         @Override
  1103.         public void close() {

  1104.             // reset event handlers
  1105.             integrator.clearEventDetectors();
  1106.             detectors.forEach(integrator::addEventDetector);

  1107.             // reset step handlers
  1108.             integrator.clearStepHandlers();
  1109.             stepHandlers.forEach(integrator::addStepHandler);

  1110.         }

  1111.     }

  1112. }