GLONASSAnalyticalPropagator.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.analytical.gnss;

  18. import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
  19. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  20. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  21. import org.hipparchus.util.FastMath;
  22. import org.hipparchus.util.FieldSinCos;
  23. import org.hipparchus.util.MathArrays;
  24. import org.hipparchus.util.MathUtils;
  25. import org.hipparchus.util.Precision;
  26. import org.orekit.attitudes.Attitude;
  27. import org.orekit.attitudes.AttitudeProvider;
  28. import org.orekit.data.DataContext;
  29. import org.orekit.errors.OrekitException;
  30. import org.orekit.errors.OrekitMessages;
  31. import org.orekit.frames.Frame;
  32. import org.orekit.orbits.CartesianOrbit;
  33. import org.orekit.orbits.Orbit;
  34. import org.orekit.propagation.SpacecraftState;
  35. import org.orekit.propagation.analytical.AbstractAnalyticalPropagator;
  36. import org.orekit.propagation.analytical.gnss.data.GLONASSAlmanac;
  37. import org.orekit.propagation.analytical.gnss.data.GLONASSNavigationMessage;
  38. import org.orekit.propagation.analytical.gnss.data.GLONASSOrbitalElements;
  39. import org.orekit.propagation.analytical.gnss.data.GNSSConstants;
  40. import org.orekit.time.AbsoluteDate;
  41. import org.orekit.time.GLONASSDate;
  42. import org.orekit.time.TimeScale;
  43. import org.orekit.utils.PVCoordinates;

  44. /**
  45.  * This class aims at propagating a GLONASS orbit from {@link GLONASSOrbitalElements}.
  46.  * <p>
  47.  * <b>Caution:</b> The Glonass analytical propagator can only be used with {@link GLONASSAlmanac}.
  48.  * Using this propagator with a {@link GLONASSNavigationMessage} is prone to error.
  49.  * </p>
  50.  *
  51.  * @see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-General.-Edition-1.0-2016.pdf">
  52.  *       GLONASS Interface Control Document</a>
  53.  *
  54.  * @author Bryan Cazabonne
  55.  * @since 10.0
  56.  *
  57.  */
  58. public class GLONASSAnalyticalPropagator extends AbstractAnalyticalPropagator {

  59.     // Constants
  60.     /** Constant 7.0 / 3.0. */
  61.     private static final double SEVEN_THIRD = 7.0 / 3.0;

  62.     /** Constant 7.0 / 6.0. */
  63.     private static final double SEVEN_SIXTH = 7.0 / 6.0;

  64.     /** Constant 7.0 / 24.0. */
  65.     private static final double SEVEN_24TH = 7.0 / 24.0;

  66.     /** Constant 49.0 / 72.0. */
  67.     private static final double FN_72TH = 49.0 / 72.0;

  68.     /** Value of the earth's rotation rate in rad/s. */
  69.     private static final double GLONASS_AV = 7.2921150e-5;

  70.     /** Mean value of inclination for Glonass orbit is equal to 63°. */
  71.     private static final double GLONASS_MEAN_INCLINATION = 64.8;

  72.     /** Mean value of Draconian period for Glonass orbit is equal to 40544s : 11 hours 15 minutes 44 seconds. */
  73.     private static final double GLONASS_MEAN_DRACONIAN_PERIOD = 40544;

  74.     /** Second degree zonal coefficient of normal potential. */
  75.     private static final double GLONASS_J20 = 1.08262575e-3;

  76.     /** Equatorial radius of Earth (m). */
  77.     private static final double GLONASS_EARTH_EQUATORIAL_RADIUS = 6378136;

  78.     // Data used to solve Kepler's equation
  79.     /** First coefficient to compute Kepler equation solver starter. */
  80.     private static final double A;

  81.     /** Second coefficient to compute Kepler equation solver starter. */
  82.     private static final double B;

  83.     static {
  84.         final double k1 = 3 * FastMath.PI + 2;
  85.         final double k2 = FastMath.PI - 1;
  86.         final double k3 = 6 * FastMath.PI - 1;
  87.         A  = 3 * k2 * k2 / k1;
  88.         B  = k3 * k3 / (6 * k1);
  89.     }

  90.     /** The GLONASS orbital elements used. */
  91.     private final GLONASSOrbitalElements glonassOrbit;

  92.     /** The spacecraft mass (kg). */
  93.     private final double mass;

  94.     /** The ECI frame used for GLONASS propagation. */
  95.     private final Frame eci;

  96.     /** The ECEF frame used for GLONASS propagation. */
  97.     private final Frame ecef;

  98.     /** Data context for propagation. */
  99.     private final DataContext dataContext;

  100.     /**
  101.      * Private constructor.
  102.      * @param glonassOrbit Glonass orbital elements
  103.      * @param eci Earth Centered Inertial frame
  104.      * @param ecef Earth Centered Earth Fixed frame
  105.      * @param provider Attitude provider
  106.      * @param mass Satellite mass (kg)
  107.      * @param context Data context
  108.      */
  109.     GLONASSAnalyticalPropagator(final GLONASSOrbitalElements glonassOrbit, final Frame eci,
  110.                                 final Frame ecef, final AttitudeProvider provider,
  111.                                 final double mass, final DataContext context) {
  112.         super(provider);
  113.         this.dataContext = context;
  114.         // Stores the GLONASS orbital elements
  115.         this.glonassOrbit = glonassOrbit;
  116.         // Sets the start date as the date of the orbital elements
  117.         setStartDate(glonassOrbit.getDate());
  118.         // Sets the mass
  119.         this.mass = mass;
  120.         // Sets the Earth Centered Inertial frame
  121.         this.eci  = eci;
  122.         // Sets the Earth Centered Earth Fixed frame
  123.         this.ecef = ecef;
  124.         // Sets initial state
  125.         final Orbit orbit = propagateOrbit(getStartDate());
  126.         final Attitude attitude = provider.getAttitude(orbit, orbit.getDate(), orbit.getFrame());
  127.         super.resetInitialState(new SpacecraftState(orbit, attitude).withMass(mass));
  128.     }

  129.     /**
  130.      * Gets the PVCoordinates of the GLONASS SV in {@link #getECEF() ECEF frame}.
  131.      *
  132.      * <p>The algorithm is defined at Appendix M.1 from GLONASS Interface Control Document,
  133.      * with automatic differentiation added to compute velocity and
  134.      * acceleration.</p>
  135.      *
  136.      * @param date the computation date
  137.      * @return the GLONASS SV PVCoordinates in {@link #getECEF() ECEF frame}
  138.      */
  139.     public PVCoordinates propagateInEcef(final AbsoluteDate date) {

  140.         // Interval of prediction dTpr
  141.         final UnivariateDerivative2 dTpr = getdTpr(date);

  142.         // Zero
  143.         final UnivariateDerivative2 zero = dTpr.getField().getZero();

  144.         // The number of whole orbits "w" on a prediction interval
  145.         final UnivariateDerivative2 w = FastMath.floor(dTpr.divide(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT()));

  146.         // Current inclination
  147.         final UnivariateDerivative2 i = zero.newInstance(GLONASS_MEAN_INCLINATION / 180 * GNSSConstants.GLONASS_PI + glonassOrbit.getDeltaI());

  148.         // Eccentricity
  149.         final UnivariateDerivative2 e = zero.newInstance(glonassOrbit.getE());

  150.         // Mean draconique period in orbite w+1 and mean motion
  151.         final UnivariateDerivative2 tDR = w.multiply(2.0).add(1.0).multiply(glonassOrbit.getDeltaTDot()).
  152.                                           add(glonassOrbit.getDeltaT()).
  153.                                           add(GLONASS_MEAN_DRACONIAN_PERIOD);
  154.         final UnivariateDerivative2 n = tDR.divide(2.0 * GNSSConstants.GLONASS_PI).reciprocal();

  155.         // Semi-major axis : computed by successive approximation
  156.         final UnivariateDerivative2 sma = computeSma(tDR, i, e);

  157.         // (ae / p)^2 term
  158.         final UnivariateDerivative2 p     = sma.multiply(e.multiply(e).negate().add(1.0));
  159.         final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  160.         final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);

  161.         // Current longitude of the ascending node
  162.         final UnivariateDerivative2 lambda = computeLambda(dTpr, n, aeop2, i);

  163.         // Current argument of perigee
  164.         final UnivariateDerivative2 pa = computePA(dTpr, n, aeop2, i);

  165.         // Mean longitude at the instant the spacecraft passes the current ascending node
  166.         final UnivariateDerivative2 tanPAo2 = FastMath.tan(pa.divide(2.0));
  167.         final UnivariateDerivative2 coef    = tanPAo2.multiply(FastMath.sqrt(e.negate().add(1.0).divide(e.add(1.0))));
  168.         final UnivariateDerivative2 e0      = FastMath.atan(coef).multiply(2.0).negate();
  169.         final UnivariateDerivative2 m1      = pa.add(e0).subtract(FastMath.sin(e0).multiply(e));

  170.         // Current mean longitude
  171.         final UnivariateDerivative2 correction = dTpr.
  172.                                                  subtract(w.multiply(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT())).
  173.                                                  subtract(w.square().multiply(glonassOrbit.getDeltaTDot()));
  174.         final UnivariateDerivative2 m = m1.add(n.multiply(correction));

  175.         // Take into consideration the periodic perturbations
  176.         final FieldSinCos<UnivariateDerivative2> scPa = FastMath.sinCos(pa);
  177.         final UnivariateDerivative2 h = e.multiply(scPa.sin());
  178.         final UnivariateDerivative2 l = e.multiply(scPa.cos());
  179.         // δa1
  180.         final UnivariateDerivative2[] d1 = getParameterDifferentials(sma, i, h, l, m1);
  181.         // δa2
  182.         final UnivariateDerivative2[] d2 = getParameterDifferentials(sma, i, h, l, m);
  183.         // Apply corrections
  184.         final UnivariateDerivative2 smaCorr    = sma.add(d2[0]).subtract(d1[0]);
  185.         final UnivariateDerivative2 hCorr      = h.add(d2[1]).subtract(d1[1]);
  186.         final UnivariateDerivative2 lCorr      = l.add(d2[2]).subtract(d1[2]);
  187.         final UnivariateDerivative2 lambdaCorr = lambda.add(d2[3]).subtract(d1[3]);
  188.         final UnivariateDerivative2 iCorr      = i.add(d2[4]).subtract(d1[4]);
  189.         final UnivariateDerivative2 mCorr      = m.add(d2[5]).subtract(d1[5]);
  190.         final UnivariateDerivative2 eCorr      = FastMath.sqrt(hCorr.multiply(hCorr).add(lCorr.multiply(lCorr)));
  191.         final UnivariateDerivative2 paCorr;
  192.         if (eCorr.getValue() == 0.) {
  193.             paCorr = zero;
  194.         } else {
  195.             if (lCorr.getValue() == eCorr.getValue()) {
  196.                 paCorr = zero.newInstance(0.5 * GNSSConstants.GLONASS_PI);
  197.             } else if (lCorr.getValue() == -eCorr.getValue()) {
  198.                 paCorr = zero.newInstance(-0.5 * GNSSConstants.GLONASS_PI);
  199.             } else {
  200.                 paCorr = FastMath.atan2(hCorr, lCorr);
  201.             }
  202.         }

  203.         // Eccentric Anomaly
  204.         final UnivariateDerivative2 mk = mCorr.subtract(paCorr);
  205.         final UnivariateDerivative2 ek = getEccentricAnomaly(mk, eCorr);

  206.         // True Anomaly
  207.         final UnivariateDerivative2 vk =  getTrueAnomaly(ek, eCorr);

  208.         // Argument of Latitude
  209.         final UnivariateDerivative2 phik = vk.add(paCorr);

  210.         // Corrected Radius
  211.         final UnivariateDerivative2 pCorr = smaCorr.multiply(eCorr.multiply(eCorr).negate().add(1.0));
  212.         final UnivariateDerivative2 rk    = pCorr.divide(eCorr.multiply(FastMath.cos(vk)).add(1.0));

  213.         // Positions in orbital plane
  214.         final FieldSinCos<UnivariateDerivative2> scPhik = FastMath.sinCos(phik);
  215.         final UnivariateDerivative2 xk = scPhik.cos().multiply(rk);
  216.         final UnivariateDerivative2 yk = scPhik.sin().multiply(rk);

  217.         // Coordinates of position
  218.         final FieldSinCos<UnivariateDerivative2> scL = FastMath.sinCos(lambdaCorr);
  219.         final FieldSinCos<UnivariateDerivative2> scI = FastMath.sinCos(iCorr);
  220.         final FieldVector3D<UnivariateDerivative2> positionwithDerivatives =
  221.                         new FieldVector3D<>(xk.multiply(scL.cos()).subtract(yk.multiply(scL.sin()).multiply(scI.cos())),
  222.                                             xk.multiply(scL.sin()).add(yk.multiply(scL.cos()).multiply(scI.cos())),
  223.                                             yk.multiply(scI.sin()));

  224.         return new PVCoordinates(new Vector3D(positionwithDerivatives.getX().getValue(),
  225.                                               positionwithDerivatives.getY().getValue(),
  226.                                               positionwithDerivatives.getZ().getValue()),
  227.                                  new Vector3D(positionwithDerivatives.getX().getFirstDerivative(),
  228.                                               positionwithDerivatives.getY().getFirstDerivative(),
  229.                                               positionwithDerivatives.getZ().getFirstDerivative()),
  230.                                  new Vector3D(positionwithDerivatives.getX().getSecondDerivative(),
  231.                                               positionwithDerivatives.getY().getSecondDerivative(),
  232.                                               positionwithDerivatives.getZ().getSecondDerivative()));
  233.     }

  234.     /**
  235.      * Gets eccentric anomaly from mean anomaly.
  236.      * <p>The algorithm used to solve the Kepler equation has been published in:
  237.      * "Procedures for  solving Kepler's Equation", A. W. Odell and R. H. Gooding,
  238.      * Celestial Mechanics 38 (1986) 307-334</p>
  239.      * <p>It has been copied from the OREKIT library (KeplerianOrbit class).</p>
  240.      *
  241.      * @param mk the mean anomaly (rad)
  242.      * @param e the eccentricity
  243.      * @return the eccentric anomaly (rad)
  244.      */
  245.     private UnivariateDerivative2 getEccentricAnomaly(final UnivariateDerivative2 mk, final UnivariateDerivative2 e) {

  246.         // reduce M to [-PI PI] interval
  247.         final UnivariateDerivative2 reducedM = new UnivariateDerivative2(MathUtils.normalizeAngle(mk.getValue(), 0.0),
  248.                                                                          mk.getFirstDerivative(),
  249.                                                                          mk.getSecondDerivative());

  250.         // compute start value according to A. W. Odell and R. H. Gooding S12 starter
  251.         UnivariateDerivative2 ek;
  252.         if (FastMath.abs(reducedM.getValue()) < 1.0 / 6.0) {
  253.             if (FastMath.abs(reducedM.getValue()) < Precision.SAFE_MIN) {
  254.                 // this is an Orekit change to the S12 starter.
  255.                 // If reducedM is 0.0, the derivative of cbrt is infinite which induces NaN appearing later in
  256.                 // the computation. As in this case E and M are almost equal, we initialize ek with reducedM
  257.                 ek = reducedM;
  258.             } else {
  259.                 // this is the standard S12 starter
  260.                 ek = reducedM.add(reducedM.multiply(6).cbrt().subtract(reducedM).multiply(e));
  261.             }
  262.         } else {
  263.             if (reducedM.getValue() < 0) {
  264.                 final UnivariateDerivative2 w = reducedM.add(FastMath.PI);
  265.                 ek = reducedM.add(w.multiply(-A).divide(w.subtract(B)).subtract(FastMath.PI).subtract(reducedM).multiply(e));
  266.             } else {
  267.                 final UnivariateDerivative2 minusW = reducedM.subtract(FastMath.PI);
  268.                 ek = reducedM.add(minusW.multiply(A).divide(minusW.add(B)).add(FastMath.PI).subtract(reducedM).multiply(e));
  269.             }
  270.         }

  271.         final UnivariateDerivative2 e1 = e.negate().add(1.0);
  272.         final boolean noCancellationRisk = (e1.getValue() + ek.getValue() * ek.getValue() / 6) >= 0.1;

  273.         // perform two iterations, each consisting of one Halley step and one Newton-Raphson step
  274.         for (int j = 0; j < 2; ++j) {
  275.             final UnivariateDerivative2 f;
  276.             UnivariateDerivative2 fd;
  277.             final UnivariateDerivative2 fdd  = ek.sin().multiply(e);
  278.             final UnivariateDerivative2 fddd = ek.cos().multiply(e);
  279.             if (noCancellationRisk) {
  280.                 f  = ek.subtract(fdd).subtract(reducedM);
  281.                 fd = fddd.subtract(1).negate();
  282.             } else {
  283.                 f  = eMeSinE(ek, e).subtract(reducedM);
  284.                 final UnivariateDerivative2 s = ek.multiply(0.5).sin();
  285.                 fd = s.multiply(s).multiply(e.multiply(2.0)).add(e1);
  286.             }
  287.             final UnivariateDerivative2 dee = f.multiply(fd).divide(f.multiply(0.5).multiply(fdd).subtract(fd.multiply(fd)));

  288.             // update eccentric anomaly, using expressions that limit underflow problems
  289.             final UnivariateDerivative2 w = fd.add(dee.multiply(0.5).multiply(fdd.add(dee.multiply(fdd).divide(3))));
  290.             fd = fd.add(dee.multiply(fdd.add(dee.multiply(0.5).multiply(fdd))));
  291.             ek = ek.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
  292.         }

  293.         // expand the result back to original range
  294.         ek = ek.add(mk.getValue() - reducedM.getValue());

  295.         // Returns the eccentric anomaly
  296.         return ek;
  297.     }

  298.     /**
  299.      * Accurate computation of E - e sin(E).
  300.      *
  301.      * @param E eccentric anomaly
  302.      * @param ecc the eccentricity
  303.      * @return E - e sin(E)
  304.      */
  305.     private UnivariateDerivative2 eMeSinE(final UnivariateDerivative2 E, final UnivariateDerivative2 ecc) {
  306.         UnivariateDerivative2 x = E.sin().multiply(ecc.negate().add(1.0));
  307.         final UnivariateDerivative2 mE2 = E.negate().multiply(E);
  308.         UnivariateDerivative2 term = E;
  309.         UnivariateDerivative2 d    = E.getField().getZero();
  310.         // the inequality test below IS intentional and should NOT be replaced by a check with a small tolerance
  311.         for (UnivariateDerivative2 x0 = d.add(Double.NaN); !Double.valueOf(x.getValue()).equals(x0.getValue());) {
  312.             d = d.add(2);
  313.             term = term.multiply(mE2.divide(d.multiply(d.add(1))));
  314.             x0 = x;
  315.             x = x.subtract(term);
  316.         }
  317.         return x;
  318.     }

  319.     /** Gets true anomaly from eccentric anomaly.
  320.     *
  321.     * @param ek the eccentric anomaly (rad)
  322.     * @param ecc the eccentricity
  323.     * @return the true anomaly (rad)
  324.     */
  325.     private UnivariateDerivative2 getTrueAnomaly(final UnivariateDerivative2 ek, final UnivariateDerivative2 ecc) {
  326.         final UnivariateDerivative2 svk = ek.sin().multiply(FastMath.sqrt( ecc.square().negate().add(1.0)));
  327.         final UnivariateDerivative2 cvk = ek.cos().subtract(ecc);
  328.         return svk.atan2(cvk);
  329.     }

  330.     /**
  331.      * Get the interval of prediction.
  332.      *
  333.      * @param date the considered date
  334.      * @return the duration from GLONASS orbit Reference epoch (s)
  335.      */
  336.     private UnivariateDerivative2 getdTpr(final AbsoluteDate date) {
  337.         final TimeScale glonass = dataContext.getTimeScales().getGLONASS();
  338.         final GLONASSDate tEnd = new GLONASSDate(date, glonass);
  339.         final GLONASSDate tSta = new GLONASSDate(glonassOrbit.getDate(), glonass);
  340.         final int n  = tEnd.getDayNumber();
  341.         final int na = tSta.getDayNumber();
  342.         final int deltaN;
  343.         if (na == 27) {
  344.             deltaN = n - na - FastMath.round((float) (n - na) / 1460) * 1460;
  345.         } else {
  346.             deltaN = n - na - FastMath.round((float) (n - na) / 1461) * 1461;
  347.         }
  348.         final UnivariateDerivative2 ti = new UnivariateDerivative2(tEnd.getSecInDay(), 1.0, 0.0);

  349.         return ti.subtract(glonassOrbit.getTime()).add(86400 * deltaN);
  350.     }

  351.     /**
  352.      * Computes the semi-major axis of orbit using technique of successive approximations.
  353.      * @param tDR mean draconique period (s)
  354.      * @param i current inclination (rad)
  355.      * @param e eccentricity
  356.      * @return the semi-major axis (m).
  357.      */
  358.     private UnivariateDerivative2 computeSma(final UnivariateDerivative2 tDR,
  359.                                              final UnivariateDerivative2 i,
  360.                                              final UnivariateDerivative2 e) {

  361.         // Zero
  362.         final UnivariateDerivative2 zero = tDR.getField().getZero();

  363.         // If one of the input parameter is equal to Double.NaN, an infinite loop can occur.
  364.         // In that case, we do not compute the value of the semi major axis.
  365.         // We decided to return a Double.NaN value instead.
  366.         if (Double.isNaN(tDR.getValue()) || Double.isNaN(i.getValue()) || Double.isNaN(e.getValue())) {
  367.             return zero.add(Double.NaN);
  368.         }

  369.         // Common parameters
  370.         final UnivariateDerivative2 sinI         = FastMath.sin(i);
  371.         final UnivariateDerivative2 sin2I        = sinI.multiply(sinI);
  372.         final UnivariateDerivative2 ome2         = e.multiply(e).negate().add(1.0);
  373.         final UnivariateDerivative2 ome2Pow3o2   = FastMath.sqrt(ome2).multiply(ome2);
  374.         final UnivariateDerivative2 pa           = zero.newInstance(glonassOrbit.getPa());
  375.         final UnivariateDerivative2 cosPA        = FastMath.cos(pa);
  376.         final UnivariateDerivative2 opecosPA     = e.multiply(cosPA).add(1.0);
  377.         final UnivariateDerivative2 opecosPAPow2 = opecosPA.multiply(opecosPA);
  378.         final UnivariateDerivative2 opecosPAPow3 = opecosPAPow2.multiply(opecosPA);

  379.         // Initial approximation
  380.         UnivariateDerivative2 tOCK = tDR;

  381.         // Successive approximations
  382.         // The process of approximation ends when fulfilling the following condition: |a(n+1) - a(n)| < 1cm
  383.         UnivariateDerivative2 an   = zero;
  384.         UnivariateDerivative2 anp1 = zero;
  385.         boolean isLastStep = false;
  386.         while (!isLastStep) {

  387.             // a(n+1) computation
  388.             final UnivariateDerivative2 tOCKo2p     = tOCK.divide(2.0 * GNSSConstants.GLONASS_PI);
  389.             final UnivariateDerivative2 tOCKo2pPow2 = tOCKo2p.multiply(tOCKo2p);
  390.             anp1 = FastMath.cbrt(tOCKo2pPow2.multiply(GNSSConstants.GLONASS_MU));

  391.             // p(n+1) computation
  392.             final UnivariateDerivative2 p = anp1.multiply(ome2);

  393.             // Tock(n+1) computation
  394.             final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  395.             final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
  396.             final UnivariateDerivative2 term1 = aeop2.multiply(GLONASS_J20).multiply(1.5);
  397.             final UnivariateDerivative2 term2 = sin2I.multiply(2.5).negate().add(2.0);
  398.             final UnivariateDerivative2 term3 = ome2Pow3o2.divide(opecosPAPow2);
  399.             final UnivariateDerivative2 term4 = opecosPAPow3.divide(ome2);
  400.             tOCK = tDR.divide(term1.multiply(term2.multiply(term3).add(term4)).negate().add(1.0));

  401.             // Check convergence
  402.             if (FastMath.abs(anp1.subtract(an).getReal()) <= 0.01) {
  403.                 isLastStep = true;
  404.             }

  405.             an = anp1;
  406.         }

  407.         return an;

  408.     }

  409.     /**
  410.      * Computes the current longitude of the ascending node.
  411.      * @param dTpr interval of prediction (s)
  412.      * @param n mean motion (rad/s)
  413.      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
  414.      * @param i inclination (rad)
  415.      * @return the current longitude of the ascending node (rad)
  416.      */
  417.     private UnivariateDerivative2 computeLambda(final UnivariateDerivative2 dTpr,
  418.                                                 final UnivariateDerivative2 n,
  419.                                                 final UnivariateDerivative2 aeop2,
  420.                                                 final UnivariateDerivative2 i) {
  421.         final UnivariateDerivative2 cosI = FastMath.cos(i);
  422.         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cosI).multiply(1.5 * GLONASS_J20);
  423.         return dTpr.multiply(precession.add(GLONASS_AV)).negate().add(glonassOrbit.getLambda());
  424.     }

  425.     /**
  426.      * Computes the current argument of perigee.
  427.      * @param dTpr interval of prediction (s)
  428.      * @param n mean motion (rad/s)
  429.      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
  430.      * @param i inclination (rad)
  431.      * @return the current argument of perigee (rad)
  432.      */
  433.     private UnivariateDerivative2 computePA(final UnivariateDerivative2 dTpr,
  434.                                             final UnivariateDerivative2 n,
  435.                                             final UnivariateDerivative2 aeop2,
  436.                                             final UnivariateDerivative2 i) {
  437.         final UnivariateDerivative2 cosI  = FastMath.cos(i);
  438.         final UnivariateDerivative2 cos2I = cosI.multiply(cosI);
  439.         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cos2I.multiply(5.0).negate().add(1.0)).multiply(0.75 * GLONASS_J20);
  440.         return dTpr.multiply(precession).negate().add(glonassOrbit.getPa());
  441.     }

  442.     /**
  443.      * Computes the differentials δa<sub>i</sub>.
  444.      * <p>
  445.      * The value of i depends of the type of longitude (i = 2 for the current mean longitude;
  446.      * i = 1 for the mean longitude at the instant the spacecraft passes the current ascending node)
  447.      * </p>
  448.      * @param a semi-major axis (m)
  449.      * @param i inclination (rad)
  450.      * @param h x component of the eccentricity (rad)
  451.      * @param l y component of the eccentricity (rad)
  452.      * @param m longitude (current or at the ascending node instant)
  453.      * @return the differentials of the orbital parameters
  454.      */
  455.     private UnivariateDerivative2[] getParameterDifferentials(final UnivariateDerivative2 a, final UnivariateDerivative2 i,
  456.                                                               final UnivariateDerivative2 h, final UnivariateDerivative2 l,
  457.                                                               final UnivariateDerivative2 m) {

  458.         // B constant
  459.         final UnivariateDerivative2 aeoa  = a.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  460.         final UnivariateDerivative2 aeoa2 = aeoa.multiply(aeoa);
  461.         final UnivariateDerivative2 b     = aeoa2.multiply(1.5 * GLONASS_J20);

  462.         // Commons Parameters
  463.         final FieldSinCos<UnivariateDerivative2> scI   = FastMath.sinCos(i);
  464.         final FieldSinCos<UnivariateDerivative2> scLk  = FastMath.sinCos(m);
  465.         final FieldSinCos<UnivariateDerivative2> sc2Lk = FieldSinCos.sum(scLk, scLk);
  466.         final FieldSinCos<UnivariateDerivative2> sc3Lk = FieldSinCos.sum(scLk, sc2Lk);
  467.         final FieldSinCos<UnivariateDerivative2> sc4Lk = FieldSinCos.sum(sc2Lk, sc2Lk);
  468.         final UnivariateDerivative2 cosI   = scI.cos();
  469.         final UnivariateDerivative2 sinI   = scI.sin();
  470.         final UnivariateDerivative2 cosI2  = cosI.multiply(cosI);
  471.         final UnivariateDerivative2 sinI2  = sinI.multiply(sinI);
  472.         final UnivariateDerivative2 cosLk  = scLk.cos();
  473.         final UnivariateDerivative2 sinLk  = scLk.sin();
  474.         final UnivariateDerivative2 cos2Lk = sc2Lk.cos();
  475.         final UnivariateDerivative2 sin2Lk = sc2Lk.sin();
  476.         final UnivariateDerivative2 cos3Lk = sc3Lk.cos();
  477.         final UnivariateDerivative2 sin3Lk = sc3Lk.sin();
  478.         final UnivariateDerivative2 cos4Lk = sc4Lk.cos();
  479.         final UnivariateDerivative2 sin4Lk = sc4Lk.sin();

  480.         // h*cos(nLk), l*cos(nLk), h*sin(nLk) and l*sin(nLk)
  481.         // n = 1
  482.         final UnivariateDerivative2 hCosLk = h.multiply(cosLk);
  483.         final UnivariateDerivative2 hSinLk = h.multiply(sinLk);
  484.         final UnivariateDerivative2 lCosLk = l.multiply(cosLk);
  485.         final UnivariateDerivative2 lSinLk = l.multiply(sinLk);
  486.         // n = 2
  487.         final UnivariateDerivative2 hCos2Lk = h.multiply(cos2Lk);
  488.         final UnivariateDerivative2 hSin2Lk = h.multiply(sin2Lk);
  489.         final UnivariateDerivative2 lCos2Lk = l.multiply(cos2Lk);
  490.         final UnivariateDerivative2 lSin2Lk = l.multiply(sin2Lk);
  491.         // n = 3
  492.         final UnivariateDerivative2 hCos3Lk = h.multiply(cos3Lk);
  493.         final UnivariateDerivative2 hSin3Lk = h.multiply(sin3Lk);
  494.         final UnivariateDerivative2 lCos3Lk = l.multiply(cos3Lk);
  495.         final UnivariateDerivative2 lSin3Lk = l.multiply(sin3Lk);
  496.         // n = 4
  497.         final UnivariateDerivative2 hCos4Lk = h.multiply(cos4Lk);
  498.         final UnivariateDerivative2 hSin4Lk = h.multiply(sin4Lk);
  499.         final UnivariateDerivative2 lCos4Lk = l.multiply(cos4Lk);
  500.         final UnivariateDerivative2 lSin4Lk = l.multiply(sin4Lk);

  501.         // 1 - (3 / 2)*sin²i
  502.         final UnivariateDerivative2 om3o2xSinI2 = sinI2.multiply(1.5).negate().add(1.0);

  503.         // Compute Differentials
  504.         // δa
  505.         final UnivariateDerivative2 dakT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lCosLk.add(hSinLk));
  506.         final UnivariateDerivative2 dakT2 = b.multiply(sinI2).multiply(hSinLk.multiply(0.5).subtract(lCosLk.multiply(0.5)).
  507.                                                                      add(cos2Lk).add(lCos3Lk.multiply(3.5)).add(hSin3Lk.multiply(3.5)));
  508.         final UnivariateDerivative2 dak = dakT1.add(dakT2);

  509.         // δh
  510.         final UnivariateDerivative2 dhkT1 = b.multiply(om3o2xSinI2).multiply(sinLk.add(lSin2Lk.multiply(1.5)).subtract(hCos2Lk.multiply(1.5)));
  511.         final UnivariateDerivative2 dhkT2 = b.multiply(sinI2).multiply(0.25).multiply(sinLk.subtract(sin3Lk.multiply(SEVEN_THIRD)).add(lSin2Lk.multiply(5.0)).
  512.                                                                                     subtract(lSin4Lk.multiply(8.5)).add(hCos4Lk.multiply(8.5)).add(hCos2Lk));
  513.         final UnivariateDerivative2 dhkT3 = lSin2Lk.multiply(cosI2).multiply(b).multiply(0.5).negate();
  514.         final UnivariateDerivative2 dhk = dhkT1.subtract(dhkT2).add(dhkT3);

  515.         // δl
  516.         final UnivariateDerivative2 dlkT1 = b.multiply(om3o2xSinI2).multiply(cosLk.add(lCos2Lk.multiply(1.5)).add(hSin2Lk.multiply(1.5)));
  517.         final UnivariateDerivative2 dlkT2 = b.multiply(sinI2).multiply(0.25).multiply(cosLk.negate().subtract(cos3Lk.multiply(SEVEN_THIRD)).subtract(hSin2Lk.multiply(5.0)).
  518.                                                                                     subtract(lCos4Lk.multiply(8.5)).subtract(hSin4Lk.multiply(8.5)).add(lCos2Lk));
  519.         final UnivariateDerivative2 dlkT3 = hSin2Lk.multiply(cosI2).multiply(b).multiply(0.5);
  520.         final UnivariateDerivative2 dlk = dlkT1.subtract(dlkT2).add(dlkT3);

  521.         // δλ
  522.         final UnivariateDerivative2 dokT1 = b.negate().multiply(cosI);
  523.         final UnivariateDerivative2 dokT2 = lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
  524.                                           subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH));
  525.         final UnivariateDerivative2 dok = dokT1.multiply(dokT2);

  526.         // δi
  527.         final UnivariateDerivative2 dik = b.multiply(sinI).multiply(cosI).multiply(0.5).
  528.                         multiply(lCosLk.negate().add(hSinLk).add(cos2Lk).add(lCos3Lk.multiply(SEVEN_THIRD)).add(hSin3Lk.multiply(SEVEN_THIRD)));

  529.         // δL
  530.         final UnivariateDerivative2 dLkT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lSinLk.multiply(1.75).subtract(hCosLk.multiply(1.75)));
  531.         final UnivariateDerivative2 dLkT2 = b.multiply(sinI2).multiply(3.0).multiply(hCosLk.multiply(SEVEN_24TH).negate().subtract(lSinLk.multiply(SEVEN_24TH)).
  532.                                                                                    subtract(hCos3Lk.multiply(FN_72TH)).add(lSin3Lk.multiply(FN_72TH)).add(sin2Lk.multiply(0.25)));
  533.         final UnivariateDerivative2 dLkT3 = b.multiply(cosI2).multiply(lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
  534.                                                                      subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH)));
  535.         final UnivariateDerivative2 dLk = dLkT1.add(dLkT2).add(dLkT3);

  536.         // Final array
  537.         final UnivariateDerivative2[] differentials = MathArrays.buildArray(a.getField(), 6);
  538.         differentials[0] = dak.multiply(a);
  539.         differentials[1] = dhk;
  540.         differentials[2] = dlk;
  541.         differentials[3] = dok;
  542.         differentials[4] = dik;
  543.         differentials[5] = dLk;

  544.         return differentials;
  545.     }

  546.     /** {@inheritDoc} */
  547.     protected double getMass(final AbsoluteDate date) {
  548.         return mass;
  549.     }

  550.     /**
  551.      * Get the Earth gravity coefficient used for GLONASS propagation.
  552.      * @return the Earth gravity coefficient.
  553.      */
  554.     public static double getMU() {
  555.         return GNSSConstants.GLONASS_MU;
  556.     }

  557.     /**
  558.      * Gets the underlying GLONASS orbital elements.
  559.      *
  560.      * @return the underlying GLONASS orbital elements
  561.      */
  562.     public GLONASSOrbitalElements getGLONASSOrbitalElements() {
  563.         return glonassOrbit;
  564.     }

  565.     /**
  566.      * Gets the Earth Centered Inertial frame used to propagate the orbit.
  567.      * @return the ECI frame
  568.      */
  569.     public Frame getECI() {
  570.         return eci;
  571.     }

  572.     /**
  573.      * Gets the Earth Centered Earth Fixed frame used to propagate GLONASS orbits.
  574.      * @return the ECEF frame
  575.      */
  576.     public Frame getECEF() {
  577.         return ecef;
  578.     }

  579.     /** {@inheritDoc} */
  580.     public Frame getFrame() {
  581.         return eci;
  582.     }

  583.     /** {@inheritDoc} */
  584.     public void resetInitialState(final SpacecraftState state) {
  585.         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
  586.     }

  587.     /** {@inheritDoc} */
  588.     protected void resetIntermediateState(final SpacecraftState state, final boolean forward) {
  589.         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
  590.     }

  591.     /** {@inheritDoc} */
  592.     public Orbit propagateOrbit(final AbsoluteDate date) {
  593.         // Gets the PVCoordinates in ECEF frame
  594.         final PVCoordinates pvaInECEF = propagateInEcef(date);
  595.         // Transforms the PVCoordinates to ECI frame
  596.         final PVCoordinates pvaInECI = ecef.getTransformTo(eci, date).transformPVCoordinates(pvaInECEF);
  597.         // Returns the Cartesian orbit
  598.         return new CartesianOrbit(pvaInECI, eci, date, GNSSConstants.GLONASS_MU);
  599.     }

  600. }