GLONASSOrbitalElements.java

  1. /* Copyright 2002-2025 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.analytical.gnss.data;

  18. import org.orekit.propagation.analytical.gnss.GLONASSAnalyticalPropagator;
  19. import org.orekit.propagation.numerical.GLONASSNumericalPropagator;
  20. import org.orekit.time.TimeStamped;

  21. /** This interface provides the minimal set of orbital elements needed by the {@link GLONASSAnalyticalPropagator} and
  22.  * the {@link GLONASSNumericalPropagator}.
  23.  * <p>
  24.  * Because input data are different between numerical and analytical GLONASS propagators the
  25.  * methods present in this interface are implemented by default.
  26.  * Depending if the user wants to use a {@link GLONASSNumericalPropagator} or a {@link GLONASSAnalyticalPropagator}
  27.  * he can create an instance of a {@link GLONASSEphemeris} or {@link GLONASSAlmanac}.
  28.  * </p>
  29.  *
  30.  * @see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-General.-Edition-1.0-2016.pdf">
  31.  *       GLONASS Interface Control Document</a>
  32.  *
  33.  * @author Bryan Cazabonne
  34.  * @since 10.0
  35.  *
  36.  */
  37. public interface GLONASSOrbitalElements extends TimeStamped {

  38.     /**
  39.      * Get the number of the current day in a four year interval.
  40.      *
  41.      * @return the number of the current day in a four year interval
  42.      */
  43.     default int getNa() {
  44.         return 0;
  45.     }

  46.     /**
  47.      * Get the number of the current four year interval.
  48.      *
  49.      * @return the number of the current four year interval
  50.      */
  51.     default int getN4() {
  52.         return 0;
  53.     }

  54.     /**
  55.      * Get the Reference Time.
  56.      *
  57.      * @return the Reference Time (s)
  58.      */
  59.     default double getTime() {
  60.         return 0.0;
  61.     }

  62.     /**
  63.      * Get the longitude of ascending node of orbit.
  64.      *
  65.      * @return the longitude of ascending node of orbit (rad)
  66.      */
  67.     default double getLambda() {
  68.         return 0.0;
  69.     }

  70.     /**
  71.      * Get the Eccentricity.
  72.      *
  73.      * @return the Eccentricity
  74.      */
  75.     default double getE() {
  76.         return 0.0;
  77.     }

  78.     /**
  79.      * Get the Argument of Perigee.
  80.      *
  81.      * @return the Argument of Perigee (rad)
  82.      */
  83.     default double getPa() {
  84.         return 0.0;
  85.     }

  86.     /**
  87.      * Get the correction to the mean value of inclination.
  88.      *
  89.      * @return the correction to the mean value of inclination (rad)
  90.      */
  91.     default double getDeltaI() {
  92.         return 0.0;
  93.     }

  94.     /**
  95.      * Get the correction to the mean value of Draconian period.
  96.      *
  97.      * @return the correction to the mean value of Draconian period (s)
  98.      */
  99.     default double getDeltaT() {
  100.         return 0.0;
  101.     }

  102.     /**
  103.      * Get the rate of change of Draconian period.
  104.      *
  105.      * @return the rate of change of Draconian period
  106.      */
  107.     default double getDeltaTDot() {
  108.         return 0.0;
  109.     }

  110.     /**
  111.      * Get the relative deviation of predicted satellite carrier frequency from nominal value.
  112.      *
  113.      * @return the relative deviation of predicted satellite carrier frequency from nominal value
  114.      */
  115.     default double getGammaN() {
  116.         return 0.0;
  117.     }

  118.     /**
  119.      * Get the correction to the satellite time relative to GLONASS system time.
  120.      *
  121.      * @return the correction to the satellite time relative to GLONASS system time (s)
  122.      *
  123.      */
  124.     default double getTN() {
  125.         return 0.0;
  126.     }

  127.     /**
  128.      * Get the ECEF-X component of satellite velocity vector in PZ-90 datum.
  129.      *
  130.      * @return the the ECEF-X component of satellite velocity vector in PZ-90 datum (m/s)
  131.      */
  132.     default double getXDot() {
  133.         return 0.0;
  134.     }

  135.     /**
  136.      * Get the ECEF-X component of satellite coordinates in PZ-90 datum.
  137.      *
  138.      * @return the ECEF-X component of satellite coordinates in PZ-90 datum (m)
  139.      */
  140.     default double getX() {
  141.         return 0.0;
  142.     }

  143.     /**
  144.      * Get the GLONASS ECEF-X component of satellite acceleration vector in PZ-90 datum.
  145.      *
  146.      * @return the GLONASS ECEF-X component of satellite acceleration vector in PZ-90 datum (m/s²)
  147.      */
  148.     default double getXDotDot() {
  149.         return 0.0;
  150.     }

  151.     /**
  152.      * Get the ECEF-Y component of satellite velocity vector in PZ-90 datum.
  153.      *
  154.      * @return the ECEF-Y component of satellite velocity vector in PZ-90 datum (m/s)
  155.      */
  156.     default double getYDot() {
  157.         return 0.0;
  158.     }

  159.     /**
  160.      * Get the ECEF-Y component of satellite coordinates in PZ-90 datum.
  161.      *
  162.      * @return the ECEF-Y component of satellite coordinates in PZ-90 datum (m)
  163.      */
  164.     default double getY() {
  165.         return 0.0;
  166.     }

  167.     /**
  168.      * Get the GLONASS ECEF-Y component of satellite acceleration vector in PZ-90 datum.
  169.      *
  170.      * @return the GLONASS ECEF-Y component of satellite acceleration vector in PZ-90 datum (m/s²)
  171.      */
  172.     default double getYDotDot() {
  173.         return 0.0;
  174.     }

  175.     /**
  176.      * Get the ECEF-Z component of satellite velocity vector in PZ-90 datum.
  177.      *
  178.      * @return the the ECEF-Z component of satellite velocity vector in PZ-90 datum (m/s)
  179.      */
  180.     default double getZDot() {
  181.         return 0.0;
  182.     }

  183.     /**
  184.      * Get the ECEF-Z component of satellite coordinates in PZ-90 datum.
  185.      *
  186.      * @return the ECEF-Z component of satellite coordinates in PZ-90 datum (m)
  187.      */
  188.     default double getZ() {
  189.         return 0.0;
  190.     }

  191.     /**
  192.      * Get the GLONASS ECEF-Z component of satellite acceleration vector in PZ-90 datum.
  193.      *
  194.      * @return the GLONASS ECEF-Z component of satellite acceleration vector in PZ-90 datum (m/s²)
  195.      */
  196.     default double getZDotDot() {
  197.         return 0.0;
  198.     }

  199.     /**
  200.      * Gets the GLONASS Issue Of Data (IOD).
  201.      *
  202.      * @return the IOD
  203.      */
  204.     default int getIOD() {
  205.         return 0;
  206.     }

  207. }