MariniMurray.java
- /* Copyright 2011-2012 Space Applications Services
- * Licensed to CS Communication & Systèmes (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.models.earth.troposphere;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.util.FastMath;
- import org.orekit.bodies.FieldGeodeticPoint;
- import org.orekit.bodies.GeodeticPoint;
- import org.orekit.models.earth.weather.FieldPressureTemperatureHumidity;
- import org.orekit.models.earth.weather.PressureTemperatureHumidity;
- import org.orekit.models.earth.weather.PressureTemperatureHumidityProvider;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldTrackingCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TrackingCoordinates;
- import org.orekit.utils.units.Unit;
- import org.orekit.utils.units.UnitsConverter;
- /** The Marini-Murray tropospheric delay model for laser ranging.
- *
- * @see "Marini, J.W., and C.W. Murray, correction of Laser Range Tracking Data for
- * Atmospheric Refraction at Elevations Above 10 degrees, X-591-73-351, NASA GSFC, 1973"
- *
- * @author Joris Olympio
- * @author Luc Maisonobe
- * @since 12.1
- */
- public class MariniMurray implements TroposphericModel {
- /** Laser frequency parameter. */
- private final double fLambda;
- /** Provider for pressure, temperature and humidity.
- * @since 13.0
- */
- private final PressureTemperatureHumidityProvider pthProvider;
- /** Create a new Marini-Murray model for the troposphere.
- * @param lambda laser wavelength
- * @param lambdaUnits units in which {@code lambda} is given
- * @param pthProvider provider for pressure, temperature and humidity
- * @see TroposphericModelUtils#MICRO_M
- * @see TroposphericModelUtils#NANO_M
- * @since 12.1
- * */
- public MariniMurray(final double lambda, final Unit lambdaUnits, final PressureTemperatureHumidityProvider pthProvider) {
- this.pthProvider = pthProvider;
- // compute laser frequency parameter
- final double lambdaMicrometer = new UnitsConverter(lambdaUnits, TroposphericModelUtils.MICRO_M).convert(lambda);
- final double l2 = lambdaMicrometer * lambdaMicrometer;
- this.fLambda = 0.9650 + (0.0164 + 0.000228 / l2) / l2;
- }
- /** {@inheritDoc} */
- @Override
- public TroposphericDelay pathDelay(final TrackingCoordinates trackingCoordinates, final GeodeticPoint point,
- final double[] parameters, final AbsoluteDate date) {
- final PressureTemperatureHumidity weather = pthProvider.getWeatherParameters(point, date);
- final double p = weather.getPressure();
- final double t = weather.getTemperature();
- final double e = weather.getWaterVaporPressure();
- // beware since version 12.1 pressures are in Pa and not in hPa, hence the scaling has changed
- final double Ah = 0.00002357 * p;
- final double Aw = 0.00000141 * e;
- final double K = 1.163 - 0.00968 * FastMath.cos(2 * point.getLatitude()) - 0.00104 * t + 0.0000001435 * p;
- final double B = 1.084e-10 * p * t * K + 4.734e-12 * p * (p / t) * (2 * K) / (3 * K - 1);
- final double flambda = getLaserFrequencyParameter();
- final double fsite = getSiteFunctionValue(point);
- final double sinE = FastMath.sin(trackingCoordinates.getElevation());
- final double totalZenith = (flambda / fsite) * (Ah + Aw + B) / (1.0 + B / ((Ah + Aw + B) * (1.0 + 0.01)));
- final double totalElev = (flambda / fsite) * (Ah + Aw + B) / (sinE + B / ((Ah + Aw + B) * (sinE + 0.01)));
- final double hydrostaticZenith = (flambda / fsite) * (Ah + B) / (1.0 + B / ((Ah + B) * (1.0 + 0.01)));
- final double hydrostaticElev = (flambda / fsite) * (Ah + B) / (sinE + B / ((Ah + B) * (sinE + 0.01)));
- return new TroposphericDelay(hydrostaticZenith, totalZenith - hydrostaticZenith,
- hydrostaticElev, totalElev - hydrostaticElev);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldTroposphericDelay<T> pathDelay(final FieldTrackingCoordinates<T> trackingCoordinates,
- final FieldGeodeticPoint<T> point,
- final T[] parameters, final FieldAbsoluteDate<T> date) {
- final FieldPressureTemperatureHumidity<T> weather = pthProvider.getWeatherParameters(point, date);
- final T p = weather.getPressure();
- final T t = weather.getTemperature();
- final T e = weather.getWaterVaporPressure();
- // beware since version 12.1 pressures are in Pa and not in hPa, hence the scaling has changed
- final T Ah = p.multiply(0.00002357);
- final T Aw = e.multiply(0.00000141);
- final T K = FastMath.cos(point.getLatitude().multiply(2.)).multiply(0.00968).negate().
- add(1.163).
- subtract(t.multiply(0.00104)).
- add(p.multiply(0.0000001435));
- final T B = K.multiply(t.multiply(p).multiply(1.084e-10 )).
- add(K.multiply(2.).multiply(p.multiply(p).divide(t).multiply(4.734e-12)).divide(K.multiply(3.).subtract(1.)));
- final double flambda = getLaserFrequencyParameter();
- final T fsite = getSiteFunctionValue(point);
- final T sinE = FastMath.sin(trackingCoordinates.getElevation());
- final T one = date.getField().getOne();
- final T totalZenith = fsite.divide(flambda).reciprocal().
- multiply(B.add(Ah).add(Aw)).
- divide(one.add(one.add(0.01).multiply(B.add(Ah).add(Aw)).divide(B).reciprocal()));
- final T totalElev = fsite.divide(flambda).reciprocal().
- multiply(B.add(Ah).add(Aw)).
- divide(sinE.add(sinE.add(0.01).multiply(B.add(Ah).add(Aw)).divide(B).reciprocal()));
- final T hydrostaticZenith = fsite.divide(flambda).reciprocal().
- multiply(B.add(Ah)).
- divide(one.add(one.add(0.01).multiply(B.add(Ah)).divide(B).reciprocal()));
- final T hydrostaticElev = fsite.divide(flambda).reciprocal().
- multiply(B.add(Ah)).
- divide(sinE.add(sinE.add(0.01).multiply(B.add(Ah)).divide(B).reciprocal()));
- return new FieldTroposphericDelay<>(hydrostaticZenith, totalZenith.subtract(hydrostaticZenith),
- hydrostaticElev, totalElev.subtract(hydrostaticElev));
- }
- /** {@inheritDoc} */
- @Override
- public List<ParameterDriver> getParametersDrivers() {
- return Collections.emptyList();
- }
- /** Get the laser frequency parameter f(lambda).
- * It is one for Ruby laser (lambda = 0.6943 micron)
- * For infrared lasers, f(lambda) = 0.97966.
- *
- * @return the laser frequency parameter f(lambda).
- */
- private double getLaserFrequencyParameter() {
- return fLambda;
- }
- /** Get the site parameter.
- *
- * @param point station location
- * @return the site parameter.
- */
- private double getSiteFunctionValue(final GeodeticPoint point) {
- return 1. - 0.0026 * FastMath.cos(2 * point.getLatitude()) - 0.00031 * 0.001 * point.getAltitude();
- }
- /** Get the site parameter.
- *
- * @param <T> type of the elements
- * @param point station location
- * @return the site parameter.
- */
- private <T extends CalculusFieldElement<T>> T getSiteFunctionValue(final FieldGeodeticPoint<T> point) {
- return FastMath.cos(point.getLatitude().multiply(2)).multiply(0.0026).add(point.getAltitude().multiply(0.001).multiply(0.00031)).negate().add(1.);
- }
- }